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Abstract 

Objective  Systemic lupus erythematosus (SLE) is a clinically and biologically heterogenous autoimmune disease. 
We aimed to investigate the plasma proteome of patients with active SLE to identify novel subgroups, or endotypes, 
of patients.

Method  Plasma was collected from patients with active SLE who were enrolled in the British Isles Lupus Assess‑
ment Group Biologics Registry (BILAG-BR). The plasma proteome was analysed using a data-independent acquisition 
method, Sequential Window Acquisition of All theoretical mass spectra mass spectrometry (SWATH-MS). Unsuper‑
vised, data-driven clustering algorithms were used to delineate groups of patients with a shared proteomic profile.

Results  In 223 patients, six clusters were identified based on quantification of 581 proteins. Between the clusters, 
there were significant differences in age (p = 0.012) and ethnicity (p = 0.003). There was increased musculoskeletal 
disease activity in cluster 1 (C1), 19/27 (70.4%) (p = 0.002) and renal activity in cluster 6 (C6) 15/24 (62.5%) (p = 0.051). 
Anti-SSa/Ro was the only autoantibody that significantly differed between clusters (p = 0.017). C1 was associated 
with p21-activated kinases (PAK) and Phospholipase C (PLC) signalling. Within C1 there were two sub-clusters (C1A 
and C1B) defined by 49 proteins related to cytoskeletal protein binding. C2 and C6 demonstrated opposite Rho fam‑
ily GTPase and Rho GDI signalling. Three proteins (MZB1, SND1 and AGL) identified in C6 increased the classification 
of active renal disease although this did not reach statistical significance (p = 0.0617).

Conclusions  Unsupervised proteomic analysis identifies clusters of patients with active SLE, that are associated 
with clinical and serological features, which may facilitate biomarker discovery. The observed proteomic heterogene‑
ity further supports the need for a personalised approach to treatment in SLE.
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Introduction
Systemic lupus erythematosus (SLE) is an inflammatory 
autoimmune rheumatic disease with significant morbid-
ity and mortality [1]; it is heterogeneous in both clini-
cal features and treatment response. Although several 
new treatments for SLE have been developed, there is an 
important unmet need for disease biomarkers to measure 
active disease and predict treatment response.

The clinical heterogeneity of SLE may reflect differ-
ent underlying cellular and molecular processes. Despite 
a better understanding of mechanisms that contribute 
to disease such as increased B cell activity and type 1 
interferon production, which have led to more targeted 
novel therapies, the overall response rates to these thera-
pies in clinical trials are typically around 40–60% [2, 3]. 
A more personalised approach to therapy may increase 
response rates. For example, a post hoc analysis of ran-
domised controlled trials using belimumab (BEL), an 
anti-BAFF monoclonal antibody, identified increased 
efficacy in patients with elevated anti-dsDNA antibody or 
low C3/4 complement, suggesting different patient sub-
groups may have different treatment response [4]. Com-
mon biomarkers have variable sensitivity and specificity 
for active disease (approximately 62% and 93% for anti-
dsDNA antibodies, 75% and 71% for C3 complements, 
and 48% and 71% for C4 complements) [5]. The UK Med-
ical Research Council (MRC) Precision Medicine Con-
sortium ‘Maximising SLE Therapeutic Potential by the 
Application of Novel and Stratified Approaches’ (MAS-
TERPLANS) aimed to identify novel markers to predict 
treatment response. An important first step was to iden-
tify biomarkers which may associate with specific clinical 
features of SLE.

Proteomic analysis using mass-spectrometry (MS) has 
been applied in numerous immune-mediated inflam-
matory diseases including Rheumatoid arthritis (RA) 
[6], Sjogren’s syndrome [7] and Systemic sclerosis [8]. 
Although proteomic MS studies in SLE to date have been 
modest in size, a systematic review by Nicolaou et  al. 
identified 241 potential biomarkers from 25 studies using 
gel electrophoresis or liquid chromatography tandem MS 
across numerous sample types [9, 10] within different 
manifestations of SLE such as nephritis, neuropsychiatric 
and cutaneous disease. Of note, Annexin A2 which was 
observed in three studies included in the review, was not 
detected at a high level in our study and thus excluded 
from analysis.

Sequential window acquisition of all theoretical mass 
spectra (SWATH-MS) is a data independent acquisi-
tion (DIA) MS technique. It has advantages over data-
dependant acquisition (DDA) and targeted acquisition 
(TA) methods as it employs non-selective analysis of pep-
tides and their fragments. These data are then compared 

to a spectral library of protein fragments to deconvolve 
the complex signal into relative quantities of peptides 
and proteins across hundreds of samples [11]. DIA has 
high reproducibility and can detect peptides in the order 
of tens of thousands compared to TA, where typically 
hundreds of peptides are measured in a directed non-
discovery approach [12]. Due to its unbiased nature and 
ability to identify and quantify peptides at the proteome-
scale; SWATH-MS is a powerful method for biomarker 
discovery.

The aim of the study was to use SWATH-MS to deter-
mine whether analysis of the plasma proteome can iden-
tify discrete subgroups in a large cohort of SLE patients 
with highly active disease.

Methods
Study population
We included patients with SLE fulfilling the 1997 
Updated American College of Rheumatology (ACR) or 
the Systemic Lupus International Collaborating Clin-
ics (SLICC) 2012 classification criteria registered with 
the BILAG-Biologics Registry (BILAG-BR) [13]. All had 
active disease and due to commence rituximab (RTX), 
belimumab (BEL) or mycophenolate mofetil (MMF). 
Patients commencing RTX or BEL needed to have suf-
ficiently active disease to satisfy the NHS England 2013 
Interim Clinical Commissioning Policy and National 
Institute for Health and Care Excellence (NICE) criteria 
respectively [14, 15].

Baseline plasma samples were obtained from study 
patients within a window of maximum 30  days prior to 
and a maximum of five days after, receiving escalating 
treatment with BEL, RTX or MMF.

Baseline disease activity was measured using BILAG-
2004 index [16] and SLEDAI-2000 (SLEDAI-2  K) [17]. 
Active disease in each domain was defined as BILAG-
2004 A or B score. Lupus-related damage was measured 
using the ACR/SLICC damage index (SDI) [18]. Meas-
urement of C3 and C4 levels were conducted at recruiting 
sites with low C3/C4 status determined by local labora-
tory reference ranges. Proteinuria was measured at the 
local site by spot urine protein-creatinine ratio (uPCR) or 
albumin-creatinine ratio (uACR). Values for uPCR were 
converted to uACR using the method described by Sum-
ida et al. [19].

Antibody status
All sera were tested for autoantibodies at the same centre 
by immunoprecipitation of proteins from radiolabelled 
cell lines, followed by PAGE separation and identification 
of recognised autoantigens (e.g. Ro60 [SS-A], U1RNP/
Sm, La [SS-B]) by autoradiography as described else-
where [20]. Anti-Ro52 was measured using the ABNOVA 
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SS-A 52 Ab ELISA Kit and anti-dsDNA using the Inova 
Diagnostics Quanta Lite® dsDNA SC ELISA kit.

Sample preparation
Plasma analysis was performed using Sequential Window 
Acquisition of All Theoretical Mass Spectra (SWATH-
MS). Briefly, 10uL of plasma was depleted of highly abun-
dant proteins (albumin, IgG, transferrin, fibrinogen, IgA, 
α-2-macroglobulin, α-1-antitrypsin, IgM, haptoglobin, 
α1-acid glycoprotein, apolipoprotein A-I and apolipo-
protein A-II), then concentrated through centrifugal 
filtration and added to digestion buffer of ammonium 
bicarbonate, yielding a final volume of 80–100  uL. Pro-
teins were reduced and solubilised with dithiothreitol and 
sodium deoxycholate then alkylated with iodoacetamide 
and digested with trypsin. The sample was recovered 
through centrifugation and peptides were lyophilised 
from recovered supernatant by vacuum centrifugation 
(MiVac Quattro Concentrator, SP Scientific US) and 
stored at −  80  °C until use (details in Additional file 1). 
Samples were analysed by SWATH-MS with a micro-
flow LC–MS system comprising an Eksigent nanoLC 400 
autosampler and an Eksigent nanoLC 425 pump coupled 
to a Sciex 6600 Triple-TOF mass spectrometer with a 
DuoSpray Ion Source. The system was controlled by Ana-
lyst software v1.7.1 and eksigent control software v4.2. 
This spectral library was generated on the basis of a pre-
viously published plasma protein library [21] but updated 
to be compatible with a 100 variable window acquisition 
method employed in the Stoller Centre. Full MS method-
ology is included in the Additional file 1.

SWATH maps were aligned with TRIC (msproteom-
icstools version 0.4.3) feature alignment algorithm. The 
aligned openSWATH maps were processed with MSstats 
to infer protein-level quantification based on aligned 
transition-level quantitative information. With this tech-
nique, proteins in low quantities, below the threshold of 
detection within the plasma, were designated as absent. 
Full methodology for alignment is included in the Addi-
tional file 1.

Data analysis
Hierarchical clustering was used to cluster patients 
based on their proteomic profile. The Average linkage 
method was applied. The optimal number of clusters 
was determined using the R package, nbclust [22]. The 
elbow method was used to visually confirm the number 
of clusters, and the final number of clusters resolved by 
majority rule of 30 different validation indices (see Addi-
tional file 1). Initial data visualisation was performed on 
untransformed data using t-distributed stochastic neigh-
bour embedding (t-SNE) with a perplexity of 11 (approxi-
mately 5% of the study population) [23]. For heat map 

visualisation, protein expression levels were standardised 
to Z scores (where if expression level = x, Z score calcu-
lated as (x – mean)/standard deviation).

Differential protein levels between clusters were per-
formed with the proteome of a single cluster compared 
to the remaining proteome as a “combined cluster”, i.e., 
Cluster 1 vs all remaining. The comparison was per-
formed using a linear model with multiple t-tests (R 
package limma) and an adjusted-P < 0.05 (Benjamini-
Hochberg) was considered statistically significant. 
Canonical pathways and functional protein associa-
tion networks were visualised using String (v.11.0, URL: 
https://​string-​db.​org/) [24] and Qiagen Ingenuity Path-
way Analysis (IPA) [25]. Pathways with Z score of < −  1 
or > 1 was considered significant.

Clinical variables across clusters were analysed using 
non-parametric tests; Chi square with Fisher’s exact test 
and Kruskal–Wallis as appropriate. Those features which 
are considered increased/or decreased between clusters 
are reported based on descriptive numerical differences. 
In the regression models, finite mixture models were 
used to allocate proteins with a clear bimodal distribu-
tion into undetectable/low/high groups. Other proteins 
were considered binary (undetectable/detectable). An 
adaptive lasso regression model (with sample split into 
training and validation datasets at a ratio of 3:1) was 
used to identify proteins with a non-zero coefficient with 
lambda selected via cross-validation. Analyses were per-
formed using R v.4.0.3, STATA v16.0 SE and SPSS v.26.

Results
Baseline patient characteristics
Plasma samples were analysed from 223 patients, 198 
(88.8%) were females with median (IQR) age and disease 
duration of 40 (30, 51) and 10 (6, 17) years respectively. 
At baseline, 204 (91.5%) had at least one BILAG A and/
or two BILAG B scores. Of these, active disease (BILAG 
2004 A or B score) was predominantly in mucocutaneous 
(107, 51.2%), musculoskeletal (95, 45.5%) and renal (79, 
37.4%) domains. Almost 40% had elevated anti-dsDNA 
antibodies (87/223 [39%]) and/or low C3 or C4 comple-
ment (100/223 [44.8%]).

Regarding treatment, 136/223 (61%) were taking regu-
lar oral corticosteroids with a median (IQR) dose of 10 
(5, 14) mg/day. Almost half were taking an anti-malarial 
(AM) at the time of plasma acquisition (110/223 [49.3%]) 
although 202/223 (90.6%) had ever taken an AM and 77 
(34.5%) were taking mycophenolate mofetil. The cohort 
demographics are shown in Table 1.

Cluster analysis
A total of 894 proteins were quantified by SWATH-MS. 
After removing proteins which were only detectable 

https://string-db.org/
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in < 25% of all samples, 588 remained. Seven more were 
removed due to high relative levels (> 20) with low vari-
ance (< 1), resulting in 581 proteins for analysis.

The plurality (11/30) of clustering algorithms sug-
gested the data could be split into six clusters. Clusters 
were created using hierarchical clustering and visual-
ised with t-SNE (Fig. 1). The largest cluster comprised 
65 patients (29.1% of the patient cohort; cluster 4, C4) 
followed by 27 patients (12.1% of the cohort, cluster 
1, C1), 27 patients (12.1% of the cohort, cluster 5, C5), 
36 patients (16.1%, both cluster 2 and 3, C2 and C3) 
and the smallest comprised 24 patients (10.7% of the 
cohort; cluster 6, C6).

Antibody status and age significantly differs 
between clusters
The youngest patients were in C6 (median age 30.5 
[19, 40.25] years) and the oldest in C3 (45 [39.25, 50.5] 
years) (p = 0.012 between clusters). C6 had the least 
proportion of Caucasian patients (7/24 [29.2%]); for 
further description of ethnic groups see Additional 
file  1. Between clusters, there was no statistical differ-
ence in disease duration or SDI scores (Table 2).

There was a significant difference in anti-SSA/Ro 
antibody positivity between clusters (p = 0.017), C4 had 
the highest frequency of anti-SSA/Ro (29/65 [44.6%]) 
and the lowest frequency was in C2 (4/36 [11.1%]). 
Similarly, anti-Ro60 was highest in C4, (28/65 [43.1%]) 
and lowest in C2 (3/36 [8.3%]) (p = 0.008). In contrast, 
whilst there was no significant difference between 
clusters for anti-Ro52 (K-Wallis, p = 0.059), a direct 
comparison of C4 (19/63 [30.2%]) with the remaining 
clusters combined (23/152 [15.1%)) was statistically 
significant (p = 0.014). There was no significant differ-
ence in other autoantibodies or presence of low C3/C4 
complement. Concomitant immunosuppressant or cor-
ticosteroid use did not differ across clusters.

Table 1  Patient characteristics

Total (n = 223) No (%)/median (IQR)

Age, years (n = 197) 40 (30, 51)

Female 198 (88.8)

Caucasian (n = 222) 132 (59.2)

Current smoker 27 (12.1)

Disease duration, years (n = 218) 10 (6, 17)

SLICC damage index (n = 206) 0 (0,1)

1997 ACR criteria at baseline (n = 203)

 Number fulfilling ≥ 4 criteria 186 (83.4)

 Malar rash 122 (54.7)

 Photosensitivity 115 (51.6)

 Discoid rash 41 (18.4)

 Oral ulcers 136 (61)

 Arthritis 192 (86.1)

 Serositis 69 (30.9)

 CNS 22 (9.9)

 Renal disease 81 (36.3)

 Haematologic disorder 115 (51.6)

 Immunologic disorder 151 (67.7)

 Positive ANA 185 (83)

Disease activity

 SLEDAI score (n = 212) 8 (4.5, 14)

 SLICC damage index (n = 206) 0 (0,1)

BILAG-2004 score at baseline

 Constitutional 19 (9.3)

 Mucocutaneous 107 (51.2)

 Neuropsychiatric 23 (11.2)

 Musculoskeletal 95 (45.5)

 Cardiorespiratory 35 (17)

 Gastrointestinal 11 (5.4)

 Ophthalmic 13 (6.4)

 Renal 79 (37.4)

 Haematological 9 (4.4)

 Baseline creatinine, umol/l (n = 162) 66 (57, 78)

 BMI, kg/m2 (n = 171) 26.4 (22.9, 31.3)

Medications

 Current steroid use 136 (61)

 Usual daily OCS dose (mg/day) 10 (5, 14)

 Current anti-malarial use 110 (49.3)

 Anti-malarial use ever 202 (90.6)

 Methotrexate 9 (4)

 Azathioprine 11 (4.9)

 Mycophenolate mofetil 77 (34.5)

 Calcineurin inhibitor 3(1.3)

Serology

 Ro (n = 215) 76 (35.3)

 Ro52 (n = 215) 42 (18.8)

 Ro60 (n = 192) 70 (31.4)

 La (n = 195) 19 (8.5)

 dsDNA (n = 215) 87 (39)

 dsDNA titre, IU/l 38.5 (13.9, 246.1)

Table 1  (continued)

Total (n = 223) No (%)/median (IQR)

 U1-RNP (n = 192) 56 (25.1)

 Low C3/C4 (n = 212) 100 (44.8)

IQR interquartile range, dsDNA Double stranded DNA, CNS Central Nervous 
System, ANA Anti-nuclear antibody, SLEDAI Systemic Lupus Erythematosus 
Disease Activity Index, SLICC Systemic Lupus International Collaborating Clinics, 
BILAG British Isles Lupus Assessment Group, BMI Body Mass Index, OCS Oral 
corticosteroids, ACR​ American College of Rheumatology.U1-RNP U1-Ribonuclear 
Protein, MTX Methotrexate, AZA Azathioprine, MMF Mycophenolate Mofetil, CyA 
Cyclosporin A, TAC​ Tacrolimus
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Differences in disease activity between clusters
Marked variations in the proportion of patients with 
active musculoskeletal disease (BILAG A or B score) 
were found between clusters (p = 0.002); ranging from 
19/27 (70.4%) in C1 to 5/24 (20.8%) in C6. Conversely, 
there was no significant difference between clusters 
(p = 0.177) in the number of patients with inflammatory 
arthritis fulfilling the 1997 ACR criterion.

Similarly, BILAG 2004 scores in renal disease was high-
est in C6 (15/24 [62.5%]) and lowest in C2 (9/36 [25%]) 
although the proportion of patients with renal disease 
was not statistically significant between clusters (Chi-2, 
p = 0.051). The comparison of C6 with the other clus-
ters combined, identified a significant difference (15/23 
([65.2%]) vs. 64/188 [41.2%] respectively, p = 0.005). 
Although baseline creatinine was significantly different 
between clusters, it was numerically equal lowest in C6 

(60 [52,72] and C3 (60 [53, 70] and highest in C2 (75 [58, 
94]) (K-Wallis between clusters p = 0.002).

In terms of ACR criteria, there was also a significant 
difference in patient numbers that satisfied the renal 
domain; numerically greatest in C6, (16/24 [66.7%]) and 
lowest in C2, (9/36 [25%]) (p = 0.017). Oral ulcers were 
numerically higher in C1 (20/27 [70.1%]) and lower in C5 
(14/35 [40%]) (p = 0.036).

Canonical pathways and network analysis
To investigate relevant protein networks and pathways 
that underpin each cluster, we identified proteins that 
were significantly different (higher or lower) in each 
cluster compared to all other clusters combined, using 
a linear model adjusted for multiple comparisons. The 
number of proteins with an adjusted p-value of < 0.05 

A

B

C1 C2 C3 C4 C5 C6
PI3K/AKT Signalling ↓ ↓

Leukocyte Extravasa�on 
Signalling ↑ ↑ ↑

PAK Signalling ↑ ↑ ↓
Glioma Invasiveness 

Signalling ↑ ↑
Phospholipase C Signalling ↑ ↓

RhoGDI Signalling ↓ ↓ ↓ ↑
Neuroinflamma�on Signalling 

Pathway ↓ ↓ ↓
Rac Signalling ↑ ↑ ↓

Oestrogen Receptor 
Signalling ↑ ↓

Signalling by Rho Family 
GTPases ↑ ↓

Cdc42 Signalling ↑ ↓
RhoA Signalling ↑ ↑ ↓

Ephrin Receptor Signalling ↑ ↓
MSP-RON Signalling In Cancer 

Cells Pathway ↓ ↑
Hepa�c Fibrosis Signalling 

Pathway ↑ ↓ ↓
Tumour Microenvironment 

Pathway ↓ ↓
IL-8 signalling ↓ ↓

SLE In T Cell Signalling 
Pathway ↑ ↑

C

Fig. 1  Cluster analysis of proteins in 223 patients with active SLE. A t-distributed stochastic neighbour embedding (t-SNE) plot of the 6 clusters 
following hierarchal clustering. Each point represents a single patient allocated to one of n = 6 clusters based on the plasma proteome alone. 
B Heatmap of the 6 clusters showing only those proteins which were significantly different in at least 1 cluster. Colour shows the Z-score 
with increased levels in red and decreased levels in blue. C Canonical pathways that are predicted to be activated or supressed in more than one 
cluster. The arrows show the direction (up = activation, down = suppression)
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Table 2  Comparison of patient characteristics between the 6 proteomic clusters
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Table 2  (continued)
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Table 2  (continued)

Values are n (%) or median (IQR) as appropriate. Comparisons between clusters were made using the Kruskal–Wallis test or Chi-2 test for continuous and categorical 
variables respectively

BMI Body Mass Index, dsDNA Double stranded DNA, SLEDAI Systemic Lupus Erythematosus Disease Activity Index, SLICC Systemic Lupus International Collaborating 
Clinics, BILAG British Isles Lupus Assessment Group, ACR​ American College of Rheumatology, ANA Anti-nuclear antibody, U1-RNP U1-Ribonuclear Protein
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was: 118 in C1, 67 in C2, 110 in C3, 24 in C4, 49 in C5 
and 14 in C6.

We performed pathways analysis using each of the 
6 sets of proteins in turn. Pathways with Z score ≥ 1 or 
Z ≤ − 1 were considered relevant. C1, C2, C3 and C6 each 
had unique over-represented pathways which were not 
observed in other clusters (Table 3). The number of these 
unique pathways varied between clusters and was great-
est in C1 (17 unique pathways) and lowest in C6 (one 
pathway). A total of 18 canonical pathways were common 
to two or more clusters (Fig.  1C). Notably, the RhoGDI 
signalling pathway was over-represented in 4 clusters but 
it was decreased in C2, C4 and C5 and increased in C6.

As C1 and C6 were associated with increased fre-
quency of musculoskeletal and renal disease respectively, 
we performed further analyses on proteins present within 
these clusters.

Further stratification of Cluster 1
As MSK disease was over-represented in C1, we aimed 
to identify which individual proteins were increased/
decreased in C1 and whether we could identify key 
biological pathways. We identified a total of 118 pro-
teins which were significantly different in C1 compared 
to the other 5 clusters (Fig.  2A), and network analysis 
of these 118 proteins identified a number of central 

Table 3  Unique canonical pathways in each cluster
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nodes (Fig.  2B). Furthermore, within the t-SNE plot 
(Fig.  1A), the C1 cluster appeared to form 2 distinct 
subclusters which we arbitrarily designated C1A as 
the cluster closest to C4 (purple) and the other as C1B 
(Fig.  1B). On evaluation of the heatmap of C1, a sub-
group of 49 proteins within C1 was identified as being 
different between sub-clusters 1A and 1B (Fig. 3A). Of 
these, 47/49 (96.0%) were numerically higher in C1B, 
driving this group towards C3 and C6 where they were 
also increased (the 2 numerically lower proteins were 
transketolase [TKT] and coagulation factor XII). In 
GO analysis, the top five pathways which were differen-
tially represented in C1A and C1B were “actin binding”, 
“cytoskeletal protein binding”, “calcium ion binding” 
and “Receptor for Advanced Glycation End products 
(RAGE) receptor binding” and “protein binding”. Net-
work analysis (Fig. 3B) suggested that Cofilin-1 (CFL1), 
was a central node in the proteins which defined C1B 
compared to C1A. Seven of the 49 proteins were S100 
proteins including S100A8, S100A9, S100A11 and 
S100A12 (see Additional file  1). After correction for 
multiple testing (t-test with Holm-Sidak correction) 
2 proteins were significantly higher in C1B than C1A: 
S100A4 and Transaldolase (TALDO1). We found no 
differences in other disease features, medications, 
or serology between clusters C1A and C1B (data not 
shown).

Association between plasma proteins and renal disease
As C6 had over-representation of patients with renal 
disease, we aimed to identify whether the proteins driv-
ing C6 belonged to one or more biological pathways. Of 
the 14 significantly different proteins in renal disease 
enriched cluster, C6, 3 were higher and 11 were lower 
compared to other clusters (Fig.  4A), network analysis 
did not identify a central node nor a distinct relationship 
between several nodes (Fig.  4B). Most canonical path-
ways related to C6 were predicted to be downregulated 
except for “Rho GDI signalling” and “SLE in T cell sig-
nalling pathway”. The only canonical pathway unique to 
C6 was “Integrin signalling” (for details of the pathway 
analysis related to C6 see the Additional file  1). Several 
canonical pathways, including Rac/Rho/Cdc42 path-
ways, were shared between C2 and C6 but in opposing 
directions.

We then wanted to know whether any of these 14 
proteins were associated with renal disease beyond 
those patients in C6 after accounting for important 
confounders. We used an adaptive lasso regression 
model to select those proteins from C6 which were 
associated with active renal disease (BILAG A or B) 
across the whole cohort. In the model, three proteins 
(Staphylococcal nuclease domain-containing protein 
1 [SND1], glycogen debranching enzyme [AGL] and 

Fig. 2  Proteins in C1. A Volcano plot showing the individual proteins that are significantly different in C1 compared to the other clusters. The x-axis 
shows log-fold change and the y-axis − Log10 adjusted P value. Proteins in red are those with a log fold change of < − 1 or > 1 and adjusted P 
value < 0.05. B Network analysis of the proteins significantly different in cluster 1 compared to other clusters
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marginal zone B- and B1-cell-specific protein [MZB1]) 
were selected at lambda 57; higher levels of AGL and 
lower levels of SND1 and MZB1 were associated with 
active renal disease. In these models, MZB1 was con-
sidered binary (detectable/undetectable) whilst SND1 
and AGL were ordinal (high/low/undetectable). Multi-
variable logistic regression models of active renal dis-
ease were constructed with age, gender, ethnicity, low 
C3 and/or C4 complement and high anti-dsDNA as 
covariates. The AUC for this model was 0.7346, increas-
ing to 0.7784 when the three proteins were added as 
covariates (p = 0.0617). Similarly, the AUC for a model 
of biopsy-proven lupus nephritis increased from 0.8115 
to 0.86 (p = 0.0830) (Table 4). Adding the three proteins 
to a model of proteinuria did not improve the AUC.

Discussion
Using an unbiased approach, we identified 6 proteomic 
endotypes in a cohort of patients with active SLE (Fig. 5). 
These clusters were associated with some clinical or 
serological features, notably inflammatory arthritis, 
renal disease and anti-Ro/SSA antibodies. It should be 
noted however, that the tests for statistical significance 

compare values across all 6 clusters and our reporting of 
over or under-represented disease features is descriptive 
based on numerical values. We also identified 3 proteins, 
(Staphylococcal nuclease domain-containing protein 1 
(SND1), glycogen debranching enzyme (AGL) and mar-
ginal zone B- and B1-cell-specific protein (MZB1) that 
were associated with the presence of active renal disease.

In a previous study by Idborg et  al. [26], 281 proteins 
were measured by antibody suspension bead array with 
the proteins selected based on existing published candi-
date biomarkers, microarray data and LC–MS data. Using 
generalised linear models, higher levels of interferon 
regulating factor 5 (IRF5), solute carrier family 22 mem-
ber 2 (SLC22A2) and S100 calcium binding protein A12 
(S100A12) were identified in SLE patients compared to 
healthy matched controls; in our data the S100A12 path-
way was increased in our C1B subcluster. Using unsuper-
vised clustering, Idborg identified 3 clusters of patients 
characterised by rheumatoid factor (RF)-IgM, and high 
or low levels of IRF5; the low IRF5 group closely resem-
bled healthy controls. As might be expected, the RF-high 
group had increased frequency of anti-Ro/SSA and anti-
La/SSB antibodies and a reduced frequency of nephritis. 

Fig. 3  Subcluster analysis of C1A and C1B. A Heatmap of proteins significantly different between C1 and the remaining clusters identifies 49 
proteins that are different between C1A and C1B. B Network analysis of these 49 proteins demonstrating CFL1, LCP1 and CAP1 as central nodes
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A Cluster 6 (Brown) B

Fig. 4  Proteins in C6. A Volcano plot showing the individual proteins that are significantly different in C6 compared to the other clusters. Proteins 
in red are those with a log fold change of < − 1 or > 1 and adjusted P value < 0.05. B Network analysis of the proteins significantly different in cluster 
1 compared to other clusters

Table 4  Logistic regression model for active renal disease across the whole cohort

Clinical model comprises: age, gender, ethnicity, high dsDNA, low C3 and/or C4

Proteins: SND1, AGL, MZ

Outcome Clinical model
AUC ROC

3 proteins alone
AUC ROC

Clinical model + 3 
proteins
AUC ROC

p-value (clinical model vs 
clinical model + proteins)

Active renal disease (BILAG A or B) 0.7346 0.6735 0.7784 0.0617

Biopsy-proven nephritis 0.8115 0.6947 0.8600 0.0830

Proteinuria (ACR > 70) 0.6691 0.6690 0.7208 0.2162

Cluster 1

Ac�ve MSK disease
Previous oral ulcers

Cluster 2

Higher serum crea�nine
Haematological disease (ns)

Cluster 3

White background

Cluster 4

An�-Ro/SSA

Cluster 5

Older
Non-White background

Cluster 6
Younger

Non-White background
Ac�ve renal disease (ns)
Previous renal disease

An�-U1RNP (ns)

Fig. 5  Summary of the 6 proteomic clusters. Key clinical and serological differences in each of the 6 clusters, ns = not statistically significant 
across all clusters
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Associations between these molecular subgroups and 
other clinical features of SLE are not reported.

In our study there was over-representation of active 
musculoskeletal disease in C1, and a reciprocal under-
representation in C6. Interestingly, there was no dif-
ference in number of patients fulfilling the 1997 ACR 
arthritis criterion suggesting that the protein signature 
is related to active MSK disease, or possibly non-arthritis 
MSK disease (e.g. myositis). The over-represented path-
ways in C1 included intracellular proteins associated with 
regulation of cell cytoskeleton. The P21 activated kinase 
(PAK) pathway was predicted to be increased in C1 and 
decreased in C6. Increased PAK signalling has been 
observed in fibroblast-like synoviocytes (FLS) and associ-
ated with joint damage in RA patients [27].

Data visualisation suggested that C1 comprised two 
distinct sub clusters (1A and 1B) suggesting that 2 
molecular subtypes may exist within patients with active 
MSK disease. The splitting of C1 into these sub-clusters 
appeared to be due to differences in 49 proteins which 
have roles in actin binding, cytoskeletal protein bind-
ing, calcium ion binding, RAGE receptor binding and 
protein binding. Cofilin-1 (CFL1) was a central node in 
the network analysis and has roles in actin and cytoskel-
etal protein binding. CFL1, which is stimulated by TNFα 
and GM-CSF, disassembles actin filaments during cellu-
lar replication, facilitating FLS migration in RA patients 
[28]. In a small study by Ooka et  al., anti-CFL-1 anti-
bodies were found in 6.3% of patients with SLE but also 
patients with RA, Behcet’s disease and myositis [29] sug-
gesting that CFL-1 may be an autoantigen common to 
several inflammatory diseases. Proteins in the S100 fam-
ily also differed between C1A and C1B. These proteins 
act as damage-associated molecular patterns (DAMPs) 
and plasma levels are increased in both adult and child-
hood-onset SLE, especially those with active disease [30, 
31] Whilst increased S100 proteins are associated with 
lupus nephritis [32], our study suggests that they may 
also be relevant to patients with lupus arthritis, support-
ing observations in other forms of inflammatory arthri-
tis [33]. S100A4 was significantly increased in C1B and 
in RA, S100A4 is expressed in synovium and induces the 
expression of matrix metalloproteinases [34]. Transaldo-
lase was also increased in cluster C1B. In RA, monocytes 
have increased expression of Transaldolase which has 
been proposed to protect RA monocytes from apoptosis, 
increasing the pool of activated monocytes in inflamed 
synovium [35].

Cluster 6 had the greatest proportion of renal dis-
ease (lowest in C2); these patients were younger and 
more likely to be non-Caucasian, representing the typi-
cal demographic of lupus nephritis [36]. In our data, the 
integrin signalling pathway was predicted to be reduced 

in C6, although the role of integrins in SLE remains to 
be elucidated. Mutations in the Integrin Subunit Alpha 
M (ITGAM) gene which encodes the CD11b chain of 
the Mac-1 integrin is a risk factor for SLE [37], the exact 
mechanisms by which changes in CD11b drives inflam-
mation but has been proposed to be through TLR inhibi-
tion of cytokine production [38]. In our pathway analysis, 
the “integrin signalling” pathway contained the proteins 
integrin αM, β1 and β3, but not the β2 integrin, which 
is associated with the development of SLE [39] Although 
these studies do not explore the clinical variation, one 
study in 2009 by Yang et al., observed a strong association 
in lupus nephritis with the mutation, and of note, also 
observed a higher incidence of arthritis in the absence of 
the mutation [40]. More research to identify the roles of 
these integrin subunits in lupus nephritis is required.

Kwon et al. [41], performed MS on urinary samples of 
SLE patients with and without lupus nephritis compared 
to HC. They identified an increase in 143 and 67 proteins 
in patients with SLE without nephritis and with nephri-
tis respectively. They did not perform clustering analysis 
on their cohort; however, identified 23 common proteins 
between the 2 SLE groups compared to HC, five of these 
(ORM1, antithrombin‐III [SERPINC1], ceruloplasmin, 
haemoglobin subunit beta [HBB] and delta [HBD]) were 
significantly upregulated in patients with lupus nephri-
tis. We did not detect ORM1 in our data, but the other 4 
proteins were not significantly increased in C6 compared 
to the rest of the cohort, and thus were not included in 
our lasso model. In a small study, serum Annexin 2 as 
measured by ELISA, was associated with proliferative 
lupus nephritis but not membranous disease [42]. In 
our study, Annexin 2 was detected in fewer than 25% of 
samples and thus excluded from further analysis. In our 
data we do not have details of the subtypes of lupus renal 
disease which limited any subgroup analyses of patients 
with lupus nephritis.

Only three of the significantly different proteins in C6 
had increased levels: filamin-C (FLNC), tyrosine-protein 
kinase CSK (CSK) and glycogen debranching enzyme 
(AGL). CSK is associated with autoimmunity as higher 
levels in early stages of B cell maturation increase the 
number auto-reactive B cells and autoantibody produc-
tion [43] and contrary to our study, was significantly 
downregulated in a pilot proteomic study by Zhou et al. 
[44], which had a cohort of SLE mostly enriched with 
cutaneous disease, the observed reduced CSK expres-
sion may reflect the differing treatment paradigms of skin 
versus systemic disease but may also reflect the variation 
in disease pathogenesis of SLE. Among the proteins with 
reduced expression, marginal zone B- and B1-cell-spe-
cific (MZB1) and platelet endothelial cell adhesion mol-
ecule (PECAM-1) are associated with SLE.
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PECAM-1 is an important regulator of B cell develop-
ment and B cell receptor activation. In murine models, 
PECAM-1 deficiency leads to B cell hyper-responsiveness 
and autoantibody formation [45]. It has been noted to be 
elevated in both the urine and serum of patients with SLE 
[46, 47]. Increased PECAM-1 in the serum of patients 
with SLE may also be modulated by a greater proportion 
of metabolic syndrome risk factors including increased 
age, Body Mass Index (BMI) and waist circumference 
which may increase PECAM-1 levels. Plasma levels of 
PECAM-1 were not measured, but leakage of PECAM-1 
from plasma into the urine in patients with proteinu-
ria may explain the lower levels that we observed in our 
study. Further studies with contemporaneous measure-
ment of PECAM-1 in plasma and urine should be consid-
ered in patients with lupus nephritis.

MZB1 is implicated in B cell antibody production with 
elevated levels reported in lymph nodes of lupus patients 
[48]. MBZ1 is also expressed in plasmocytic dendritic 
cells and regulates IFNα production, a key cytokine in 
SLE [49]. In our study, plasma levels of MZB1 were para-
doxically lower in C6 although this may again be due to 
increased excretion via the kidney. To identify whether 
these biomarkers may have clinical utility, and to control 
for important confounders such as ethnicity, we devel-
oped models of active renal disease using proteins identi-
fied from C6. A combination of three proteins improved 
accuracy of the model to identify patients with active 
nephritis. Although replication of these findings in an 
independent cohort is needed, this confirms that data 
reduction using cluster analysis followed by variable 
selection is a valid approach for biomarker discovery in 
patients with active SLE.

The Rac/Rho/Cdc42 pathways, which are associated 
with cell motility, were differentially modulated in C2 
and C6, and the role of these proteins in plasma war-
rants further investigation. The Rho/Rho kinase pathway 
is implicated in the pathogenesis of lupus as Rho kinase 
inhibitors ameliorate SLE disease activity in murine 
models [50, 51]. The RhoA-Rho kinase pathway is also 
implicated in B cell activation and survival [52]. If dysreg-
ulation of this pathway, reduces B cells activation or sur-
vival, this could explain the lower levels of autoantibodies 
in C2. Between the clusters, there was also a significant 
difference in number of patients with anti-SSA/Ro anti-
bodies; highest in C4 and lowest in C2. This observa-
tion was clearer for Ro60 isotype than Ro52, although 
this may reflect insufficient power to detect differences 
between groups. Interestingly, there was no increase in 
clinical features often associated with anti-SSA/Ro anti-
bodies including mucocutaneous, MSK, neurological or 
pulmonary disease in C4 compared to other clusters (nor 
reduced frequency of these features in C2) [53].

A strength of SWATH-MS is the compilation of large 
spectral libraries containing all known peptide fragments 
with good reproducibility [12]. Given this, SWATH-MS 
has been utilised in drug discovery and biomarker iden-
tification in gastroenterology, oncology and cardiology 
[54–57]. SWATH-MS has been used to identify bio-
markers in other rheumatic diseases including SS [58] 
and osteoarthritis [59]. In the study of SS by Cecchettini 
et  al., differentially expressed inflammatory proteins in 
the saliva of patients with primary SS and HC, were used 
perform gene ontology analysis which identified some 
biological processes which were also noted in our study 
including gluconeogenesis (increased in C1) and protein 
kinase A signalling (increased in C2) [58].

A strength this study design is the timing of patient 
plasma collection, which allowed us to capture the pro-
teome profile of high disease activity patients. We found 
no differences in drug treatment between clusters, sug-
gesting the protein signatures are the result of the disease, 
rather than drug effect, although longitudinal studies are 
important to validate these observations.

An important limitation is that only active SLE patients 
were included in this study, and therefore we cannot 
determine how the plasma proteome would compare to 
patients with inactive SLE or HC. As this is also a cross 
sectional study, it would also be important to perform 
a longitudinal study with HC to further assess the clini-
cal associations of identified proteins. A study in 2022 by 
Zhang et al. explored the metabolic profile of 21 HC, 52 
SLE patients and 43 LN patients using Ultra high-perfor-
mance liquid/gas chromatography-tandem mass spec-
trometry (UPL/GC–MS/MS) [60]. This study discovered 
28 differential metabolites, five of which were discrimi-
natory for LN from SLE and significantly associated with 
urea, creatinine, Cystatin C and C1q, not observed in 
healthy controls and reiterating the importance of a con-
trol group for validation.

Furthermore, as most patients recruited into BILAG-
BR, are patients with refractory disease requiring biologi-
cal therapy, patients with early or naïve disease are not 
represented in this study, noting that the activity scores 
used to stratify patients are for purposes of disease moni-
toring and making treatment decisions, but may not 
reflect disease biology. The lack of significant differences 
in SDI and disease duration between clusters at least 
implies that the patients are relatively homogeneous in 
terms active and severe disease.

As each of the 6 clusters were relatively small, this study 
may lack power to identify differences in some clinical 
or serological features. Similarly, as the most frequent 
active organ domains were mucocutaneous, MSK and 
renal, we may lack power to identify differences in other 
domains such as neuropsychiatric disease. Importantly, 
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SWATH-MS is not suited to detecting low level pro-
teins such as cytokines and chemokines and future stud-
ies including multiplex cytokine/chemokine data should 
be integrated into proteomic analysis. Interestingly, in 
our data there was a lower-than-expected proportion 
of patients taking AM, which may reflect the refractory 
stage of disease in many patients within the BILAG-BR 
or incomplete data capture; the proportion of ever used 
AM was more than 90%. Importantly, we saw no differ-
ence in AM use between clusters considering ‘current’, or 
‘ever use’ was considered.

Conclusion
In conclusion, SWATH-MS is a valid method for iden-
tifying proteomic differences in patients with SLE and 
can identify proteins which may be useful biomarkers 
for features of active disease, notably MSK and renal 
involvement. The pathways and proteins identified may 
serve as potential biomarkers and/or therapeutic targets 
and investigation of their role in SLE pathogenesis is 
warranted.
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