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Abstract
Background Meningiomas are the most prevalent primary brain tumors. Due to their increasing burden on 
healthcare, meningiomas have become a pivot of translational research globally. Despite many studies in the field 
of discovery proteomics, the identification of grade-specific markers for meningioma is still a paradox and requires 
thorough investigation. The potential of the reported markers in different studies needs further verification in large 
and independent sample cohorts to identify the best set of markers with a better clinical perspective.

Methods A total of 53 fresh frozen tumor tissue and 51 serum samples were acquired from meningioma patients 
respectively along with healthy controls, to validate the prospect of reported differentially expressed proteins and 
claimed markers of Meningioma mined from numerous manuscripts and knowledgebases. A small subset of Glioma/
Glioblastoma samples were also included to investigate inter-tumor segregation. Furthermore, a simple Machine 
Learning (ML) based analysis was performed to evaluate the classification accuracy of the list of proteins.

Results A list of 15 proteins from tissue and 12 proteins from serum were found to be the best segregator using a 
feature selection-based machine learning strategy with an accuracy of around 80% in predicting low grade (WHO 
grade I) and high grade (WHO grade II and WHO grade III) meningiomas. In addition, the discriminant analysis could 
also unveil the complexity of meningioma grading from a segregation pattern, which leads to the understanding of 
transition phases between the grades.

Conclusions The identified list of validated markers could play an instrumental role in the classification of 
meningioma as well as provide novel clinical perspectives in regard to prognosis and therapeutic targets.
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Introduction
The discovery of cancer biomarkers has played a mas-
sive role in improving early screening and diagnosis, risk 
stratification, determining response to certain medica-
tions, monitoring disease progression and predicting 
prognosis. Over the past decade, advancements in mass 
spectrometry have significantly boosted the field of pro-
teomics. As a result of these advances, proteomics has 
now forayed into clinical practice in comprehending 
the biology of diseases like cancers and infectious dis-
eases [1]. It has accelerated the discovery of biomarkers, 
improvement of therapy modalities and the identifica-
tion of new drugs. The advent of various consortia like 
CPTAC (Clinical Proteomics Tumor Analysis Consor-
tium) and HUPO (Human Proteome Organization) has 
further unleashed the power of proteomics in clinical 
applications [2–4]. At the data analysis front, the recent 
advancements in several stand-alone tools and databases 
have facilitated the development of integrated omics 
pipelines and meta-analysis workflow that expedites the 
understanding the disease pathophysiology, identification 
of newer biomarkers, and predicting novel therapeutic 
modalities [5, 6]. A perfect cancer biomarker is defined 
as one that is highly specific, selective, easily detectable at 
an early stage of the disease, and measurable at a low cost, 
however, identifying a biomarker with all these desired 
features is a highly arduous task [7, 8]. The early diag-
nosis and treatment of brain-related tumors and other 
cancers continues to be challenging even today. Despite 
many advancements, there have been multiple challenges 
in clinical translation of many potential biomarkers.

Meningiomas are one of the most frequently occur-
ring intracranial tumors accounting for around 37% of 
all brain tumors [9]. Meningiomas arise from meningeal 
layers and according to the recent classification by World 
Health Organization (WHO) are divided into three 
grades (I, II, and III) [10] based on their histopathological 
features. Though most meningiomas remain benign [9], 
about 1–3% turn malignant with good survival rate, how-
ever, surgical resection of tumors present near crucial 
brain regions pose a greater challenge to the operating 
surgeon [11]. Radio-diagnostic techniques like MRI and 
CT scans are majorly employed for the prefatory diagno-
sis of meningiomas [12] aiding in stratifying tumors into 
two types based on their location, viz. skull base and con-
vexity. However, there still remains a need to identify bio-
markers that can help in early diagnosis and predicting 
prognosis.

The recent advancements in Omics-based technologies 
have facilitated the identification of various biomarkers 
and demonstrated their role in understanding tumori-
genesis and progression. On the genomics front, loss of 
heterozygosity (LOH) in chromosome 22q and causative 
variants in a tumor suppressor gene, neurofibromatosis 

type 2 (NF2), have been associated with the formation 
of Meningiomas [13, 14]. Recent studies have also illus-
trated the mutations in TERT promoter regions in grade 
III meningiomas, along with alterations in SMARCE1 
and BAP1 that have been reported widely in clear cell 
and the rhabdoid subset of meningiomas [15, 10]. Com-
prehensive methylome profiling led to dividing menin-
gioma into six sub-classes and predicting survival 
outcomes [16]. Meanwhile, there are also parallel efforts 
undertaken at the proteomics front to comprehend the 
pathophysiology of meningioma and identify prognos-
tic markers using high-throughput technologies. Studies 
have revealed the perturbations in PI3K/AKT pathways 
and different signalling cascades, along with identifica-
tions of a number of differentially regulated proteins 
in diseased states like EGFR, CKAP4, NEK9, SF2/ASF 
(splicing factor) and HK2 [12, 17]. Several groups have 
attempted to identify grade-specific protein markers in 
the serum but need more comprehensive quantification 
and validation in larger cohorts and across grades. Pro-
teins like Apolipoprotein E and A-I, hemopexin, alpha-
2-macroglobulin, apolipoprotein B, and antithrombin-III 
have been reported as predictive markers [18]. Similarly, 
immunoassays have revealed a set of proteins like amphi-
regulin, CCL24, CD69, Prolactin, and caspase-3 to be 
upregulated in Meningioma [19]. Autoantibody screen-
ing has also revealed proteins like IGHG4, CRYM, 
EFCAB2, STAT6, CCNB1, etc., to be differentially regu-
lated across grades of Meningioma [20].

Immunoassays are widely applied in conventional clini-
cal diagnostics settings for their sensitivity and robust-
ness. While immunoassays like ELISA are considered 
as the gold standard for routine clinical settings [21]; 
the associated challenges like cross-reactivity, limited 
throughput, low sensitivity, time and labour intensive-
ness, have compelled clinicians to seek and researchers 
to shift their focus towards developing MS-based clini-
cal assays. Because of the high throughput nature and the 
rapid development of MS technologies are fostering Point 
Of Care (POC) devices in clinical settings to directly ana-
lyze biological materials like blood, tissue, sweat, urine, 
saliva, etc. [22, 23]. Similarly, the targeted proteomics 
approaches like the Multiple (or selected) reaction 
monitoring-mass spectrometry (MRM/SRM) have been 
employed to validate proteomic biomarkers. Numer-
ous studies have implemented MRM/SRM methods for 
relative and absolute quantification) of proteomic bio-
markers in biofluids like plasma, urine [24, 25] as well as 
tissues [26]. The multiplexed SRM assays are extensively 
used and found to be highly reliable and reproducible for 
the sensitive and accurate quantification of proteins [27]. 
A significant achievement is standardizing the analysis of 
vitamin D levels in blood serum [28].
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In this study, we have validated a list of potential mark-
ers reported in numerous manuscripts, popular knowl-
edgebases, and data repositories using 53 fresh frozen 
tissue and 51 serum samples of Indian origin. The study 
optimized and selected unique peptides for each protein 
reported and verified using an MRM-based targeted pro-
teomics approach. In addition to this, data analysis strate-
gies like discriminant analysis, statistical analysis, feature 
selection and ML approaches were implemented to iden-
tify a list of 15 markers from tissue and 12 markers from 
serum, with ~ 80% accuracy in predicting high grade and 
low grade meningioma despite huge heterogeneity, sub-
types and transition phases between the grades. This is 
one of the first studies which has attempted to verify and 
validate reported markers in such a large number of fresh 
frozen tissue and serum of Meningioma, which could be 
referred to as proof of concept to move forward in clini-
cal diagnosis of meningioma.

Materials and methods
Ethics approval and informed consent
The study has been approved by the Institutional Eth-
ics Committee of the Advanced Centre for Treatment 
Research and Education in Cancer (ACTREC), Tata 
Memorial Hospital (TMH), Mumbai, India, and IIT 
Bombay (ACTREC-TMC IEC No.149). The participants 
provided their due consent for participation in the study.

Sample collection
All the experiments were performed in accordance with 
the Institute’s Biosafety Guidelines. Surgically resected 
tumor tissues and serum (from peripheral blood col-
lected during the surgery) were taken for proteomics 
analysis. Surgically resected tumor tissues were collected 
from 23 low grade Meningiomas (WHO grade I) and 18 
high grade Meningiomas (grade II and III), compared 
with 8 control tissues and 4 Glioma/Glioblastoma tis-
sue samples. Serum samples were collected from 17 low 
grade Meningioma (WHO grade I) and 14 high grade 
Meningioma (WHO grade II and III) samples, along with 
6 healthy controls and 14 Glioblastoma samples. The rel-
evant clinical information is provided in Table S1. In this 
study, the experimental pool samples were prepared by 
pooling all samples and subjected to protein extraction 
and data acquisition to monitor the instrumental varia-
tion as well as to analyse the stability of the peptides.

Mining and preparation of protein list
Text-mining, literature survey, popular knowledgebases 
curation, and results of discovery proteomics stud-
ies were thoroughly checked to develop a list of pro-
tein markers linked to Meningioma pathogenesis. The 
proteins were further mapped with the biological path-
ways and diseases-gene association networking hubs to 

narrow the list. The knowledge bases used for the cura-
tion of markers are eDGAR [29], PubPular [30], Dis-
GeNET [31], BIONDA [32], and Harmonizome [33]. In 
addition, ProteomeXchange [34], PRIDE [34], OmicsDi 
[35], and Pubmed [36] were also used to mine the pro-
teomics studies related to Meningioma. The biological 
interpretation was made using DisNor [36], KEGG [37], 
and Meta-Scape databases [38].

Preparation of tissue and serum samples
The samples from fresh frozen tumor tissues and unde-
pleted serum samples were prepared for proteomic anal-
ysis, as previously reported [39, 26]. The protein from 
tissue specimens (~ 50  mg) was extracted with the lysis 
buffer composed of 8 M urea, Tris-HCl buffer (pH 8.0), 
and a Protease Inhibitor Cocktail (PIC) (Sigma Aldrich®) 
complex. 50 ug proteins from both serum and tissues 
were reduced with TCEP, followed by alkylation with 
iodoacetamide (IAA). The reduced and alkylated proteins 
were subjected to enzymatic digestion by trypsin (Pierce, 
Thermofisher Scientific). After overnight incubation for 
16 h at 37  °C, the digests were concentrated by vacuum 
drying and reconstituted in 0.1% (v/v) formic acid (FA). 
The in-house C18 stage tips were used for desalting. The 
desalted peptides were further dried and reconstituted 
using 0.1% (v/v) FA. The Scopes method was used for 
quantifying the peptides by measuring O.D. values at 205 
and 280 nm.

Transition list preparation
Proteins and their peptides for MRM experiments were 
selected based on published data, submitted discovery 
experiments, and information available in SRM Atlas. 
The transition list was prepared in Skyline daily using 
the Uniprot accession IDs for the target protein taking 
the human UniProt database as background proteome. 
Peptide length was set to 8–20 amino acids [40]. The pep-
tides were filtered out based on uniqueness for each pro-
tein checked from NextProt [41] and 0 missed cleavages. 
The transition list included y-ions from “first ion” to “last 
ion.” corresponding to + 2 and + 3 precursor ion charge. 
Method files were created for the unrefined transition 
list for the selected proteins. Initial optimization was 
performed using the sample pool to select the peptides 
and their transitions for each protein. The optimal pep-
tides and their transition for each protein were chosen 
by monitoring the sample pool. The transition list of the 
peptides for both tissue and serum is available in Table S2 
and S3 respectively.

Data acquisition using LC/MS
The data was acquired using a TSQ Altis Mass Spectrom-
eter (ThermoFisher Scientific) connected with an HPLC 
system (Dionex Ultimate 3000 -ThermoFisher Scientific). 
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Peptides were separated using Hypersil Gold C18 column 
(1.9  μm, 100 × 2.1  mm, ThermoFisher Scientific). MRM 
runs were performed using a flow rate of 450 µL/min, 
a cycle time of 2 s, and a resolution of 0.7 m/z (Q1 and 
Q3) over an LC gradient of 10  min. The solvent system 
included 0.1% FA and 100% Acetonitrile (ACN). The data 
obtained was further analyzed using Skyline daily where 
peak selection and refinement were made based on con-
sidering the peak shape, dot product and retention time. 
For further statistical analysis, the values for peak area 
were exported, and peptide-wise comparison was made.

Experimental design for tumor tissue and serum sample
A total of 49 and 24 selected proteins with more than 2 
unique peptides and at least 3 transitions for each pep-
tide were optimized in multiple pools and analysed in 53 
tissue and 51 serum samples respectively. The tissue sam-
ples included 8 controls, 4 Glioma, 23 low grade menin-
gioma, and 18 high grade meningioma while serum 
samples included 6 controls, 14 GBM, 17 low grade 
meningioma, and 14 high grade meningioma (Table 
S1). The schematic outline of the experimental plan for 
the targeted proteomics-based validation of tissue and 
serum samples has been provided in Fig.  1  A and 2A 
respectively.

Feature selection and machine learning (ML) based 
analysis
The analyzed files containing peak area values were 
exported from the Skyline daily into an Excel sheet for 
further ML and statistical analysis. The peptide corre-
lation of pool samples was performed to check for the 
instrument variability (Fig. S1A and Fig. S2A). The pep-
tides have been filtered based on the coefficient of varia-
tion (CV) values in QC-Pool samples. Statistical analysis 
and data visualization were carried out in Python and 
Microsoft Excel. The Linear Discriminant Analysis (LDA) 
plot was used to understand the cohorts. The Support 
Vector Machine (SVM) classifier was used to classify the 
low grade patients from high grade patients after compar-
ing different classifier algorithms like k Nearest Neigh-
bor (kNN), Random Forest, Naive Bayes, and Logistic 
Regression algorithm. K-fold cross-validation (k = 10) 
was employed in evaluating the models’ performance, in 
which the data was split into k randomly chosen subsets 
of about equal size. One subset was then used to validate 
the trained model using the remaining subsets. Finally, 
the average of all k subsets was taken to evaluate the final 
model performance score. The SVM linear model perfor-
mance was further evaluated and visually represented by 
plotting the ROC-AUC curve and confusion matrix using 
Python-based tools.

Results
In this study, we identified a panel of proteins from tis-
sue and serum samples that can segregate meningioma 
patients into low grade patients and high grade with 
around 80% accuracy. This report, to our knowledge, 
has for the first time attempted to verify and validate the 
potential of identified meningioma markers using robust, 
targeted proteomics. This study thus lays the foundation 
to move a step forward towards the diagnosis as well as 
prediction of disease prognosis of meningioma using tar-
geted proteomics approach.

Quality control check and assessment of instrumental 
variation through pooled tumor samples
A pool sample consisting of all the tissue samples and all 
the serum samples were prepared and run in-between 
the samples to evaluate the instrumental variability 
(Figs.  1B and 2B). A correlation coefficient greater than 
0.95 (Fig. S1A and B, Fig. S2A and B) depicts that there 
was no significant variability during data acquisition and 
the instrument performance was comparable throughout 
the experiment.

Linear discriminant analysis segregates the meningioma 
samples cohort
The LDA of 53 tissue and 51 serum samples was per-
formed with the list of 183 and 118 peptides from 49 
and 24 proteins respectively to understand the segrega-
tion between different cohorts. From the linear discrimi-
nant analysis, it is quite evident that the expression level 
of the studied peptides and proteins in the cohort of 
meningioma low grade and high grade samples showed 
remarkably different characteristics in the control and 
glioma sample cohort. However, the segregation between 
low grade and high grade meningioma was unclear and 
found to overlap (Fig.  1C). About 28.8% of the features 
showed a maximum classification of high grade samples 
from low grade samples, keeping a mixed population in 
between (Fig. S1C). The classification plots showed some 
low grade and high grade samples in the extreme of the 
two cohorts. However, some samples appeared at the 
intersection of the two grades. These samples showed the 
heterogeneity in meningioma which could be a result of 
the tumors transitioning from one grade to the other.

Alteration of tissue proteomics markers with respect to 
meningioma tumor progression and pathogenesis
The partial segregation of the meningioma grades using 
the LDA plots shows the commonalities and correlation 
between the samples despite being two different clinical 
grades. The classical strategy of identification of differ-
ential expression with significant t-test analysis identi-
fies promising grade-specific tissue markers due to the 
biological variation and heterogeneity of the samples. 
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Fig. 1 Validation of proteins using MRM assay to understand the segregation of Meningioma grades in the Tissue sample. (1A) Schematic outline of set-
ting up of targeted proteomics of Tissue samples. (1B) QC Profile plot of all the peptides in the Pool samples to decipher the integrity and stability of the 
assay in intra and inter-day comparison, (1C) LDA score-based clustering depicting the segregation of the sample groups; (1D-F) represents the peaks 
and expression of S100A11, PFN1, and PLEC using profile plot between High-Grade Meningioma vs. Low-Grade tissue samples
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Fig. 2 Validation of proteins using MRM assay to understand the segregation of Meningioma grades in the serum sample. (2A) Schematic outline of set-
ting up of targeted proteomics of serum sample. (2B) QC Profile plot of all the peptides in the Pool samples to decipher the integrity and stability of the 
assay in intra and inter-day comparison, (2C) LDA score-based clustering depicting the segregation of the sample groups; (2D-F) represents the peaks 
and expression of TF, GSN, and APOB using profile plot between High-Grade Meningioma vs. Low-Grade serum samples
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Proteins like Profilin 1 (PFN1), H4 Clustered Histone 1 
(H4C1), Annexin A1 (ANXA1), S100 calcium-binding 
protein A11 (S100A11) and Lactate Dehydrogenase 
(LDH1) were found to be upregulated in high grade 
Meningioma in comparison to low grade. However, Plec-
tin (PLEC) and Mucins (MUC4, MUC5A, MUC1) were 
found to be downregulated in high grade Meningioma. 
The sample-wise expression of these proteins has been 
shown as a heatmap (Fig. S1D). The differential expres-
sion of proteins, like S100A11 (DGYNYTLSK and 
CIESLIAVFQK), PFN1 (TFVNITPAEVGVLVGK and 
TLVLLMGK), and PLEC (NLVDNITGQR and ALQA-
LEELR) with their peptides can be found in Fig.  1D, E, 
and F. The expression level of peptides and proteins are 
provided in Table S4.

Segregation profile of different patient cohorts deciphers 
the potential of serum protein markers
A list of 24 proteins after peak refinement having more 
than 2 peptides and atleast 3 transitions for each pep-
tide was taken for LDA to understand the segregation of 
healthy control, GBM, low grade, and high grade menin-
gioma samples. The LDA plots showed clear segregation 
between healthy control samples from the meningioma 
and GBM sample cohorts. The high grade meningioma 
sample cohort overlapped with the low grade menin-
gioma and GBM cohort (Fig.  2C). Around 23.5% of the 
peptides showed segregation between the meningioma 
grades (Fig. S2C).

Differential expression analysis to identify altered serum 
markers in Meningioma
Normalised peak areas were used to calculate the fold 
change for identifying the differentially expressed pro-
teins. Proteins like Transferrin (TF), Apolipoprotein B 
(APOB), Cytochrome c oxidase subunit III (CO3), and 
Albumin (ALBU) were found to be significantly altered 
with a p-value ≤ 0.05 in high grade Meningioma, shown 
as a heatmap in Fig. S2D. Expression levels of some sig-
nificant proteins like transferrin, gelsolin and apoli-
poprotein B have been represented with refined peaks 
and group-wise box plots. The peptides represented for 
Transferrin include SASDLTWDNLK and ASYLDCIR, 
for Gelsolin include TGAQELLR and TASDFITK, and 
those for Apolipoprotein B TEVIPPLIENR and TSS-
FALNLPTLPEVK. (Fig. 2D, E, and F). The peak area of all 
the proteins and the peptides acquired after the analysis 
is available in Table S5.

Selection of top features for better segregation of 
meningioma grades using ML based classification strategy
The list of 49 proteins for tissue and 24 proteins for 
serum was used for feature selection and ML for which 
a schematic is provided in Fig. 3A. The analysis has been 

performed separately for tissue and serum taking only 
the high grade as group 1 and low grade meningioma 
samples as group 0. A list of 15 proteins for tissue and 12 
proteins for serum were selected based on the Gini index 
and Gain ratio (Fig. 3B and C). Furthermore, the selected 
feature was used to build and optimize the classification 
model to separate the low grade from high grade menin-
gioma. After optimization of the classification models, 
the SVM showed the best classifier with a mean accuracy 
of 0.8 in serum and tissue, with a 10-cross-fold validation 
(Fig.  3D and E). Furthermore, the top feature pair was 
identified using rank projection and evaluated the clus-
tering of the meningioma samples using Principal Com-
ponent Analysis (PCA) for both serum and tissue. The 
analysis showed that a combination of MUC4 and MUC1 
followed by SPTB2 and S100A11 showed segregation as a 
marker pair between low grade and high grade meningi-
oma in tissue. Interestingly, a combination of Transferrin 
(TF) and FN1 along with TF and APOB showed better 
segregation as serum markers for meningioma grades. 
Finally, the performance measurement for ML classifica-
tion and its accuracy have been shown as confusion plots 
for both tissue and serum (Fig. 3H and I). A few of these 
markers, along with the peak area of unique peptides in 
regard to meningioma grades and spectral library, are 
shown in Fig. S3A-F.

Discussion
The increasing incidence of brain tumors and cancer in 
general has brought the issue of unmet needs in screen-
ing, diagnosis and prognostic markers to the forefront. 
Conventional antibody-based techniques are plagued 
with issues like low dynamic range, cross-reactivity or 
availability for timely and efficient management [28] 
warranting the need to establish alternative laboratory 
diagnostic modalities. MRM is one such modality with 
great reproducibility and accuracy [26, 27]. MRM has 
established its utility in screening, diagnosis, predicting 
treatment response and prognosis for haematological 
malignancies and prostate cancer among others. Despite 
advancements in identifying markers that help improve 
diagnosis in other cancers, the clinical translation rate 
for meningioma is very low. There are several studies 
on meningioma reporting the role of different proteins 
in meningioma pathophysiology [12, 42, 19, 18, 43, 44]. 
However, these protein candidates still require validation 
before deploying them for diagnostic purposes. The cur-
rent study has been designed with an aim to verify and 
validate the potential of the previously reported protein 
markers using targeted proteomics approach for menin-
gioma grade classification. The quantitative data was 
obtained for 183 unique peptides (corresponding to 49 
proteins) for tissue samples, and 118 unique peptides (24 
proteins) for the serum samples. Also, among the studied 
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Fig. 3 Classification and Segregation potential of selected features using Machine Learning. (3A) Schematic outline of Machine Learning and Data analy-
sis workflow. (3B and C) illustrates the top-ranked features using Gini and Gain ratio in regards to Low Grade and High-Grade segregation in tissue and 
Serum samples, (3D and E) Model optimization for serum samples using ROC Curve for Tissue and Serum markers; (3F) shows the clustering plot for the 
combination of MUC4 and MUC1 followed by SPTB2 and S100A11; (3G) shows the clustering plot for the combination of TF and FN1 followed by TF and 
APOB; (3H and I) represent the confusion matrix using top features for tissue and serum respectively
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samples, 25 of 41 meningioma tissue and 22 of 32 serum 
samples were females depicting the disparity in menin-
gioma occurrence across sexes which aligns with the fact 
that meningiomas are 2½ times more prevalent among 
females than males [45, 46] .

The peptide level segregation in 53 tissue samples, 
showed an interesting pattern wherein the control cohort 
had no overlap with meningioma and glioma cohorts. 
The glioma cohort was found to have a clear segrega-
tion between low grade and high grade meningioma, 
indicating the potential of these peptides and proteins as 
meningioma-specific markers. The combination of these 
peptides show good inter-tumor segregation but requires 
further validation in a large glioma sample cohort owing 
to the heterogenous nature of gliomas, especially grade 
IV gliomas. Notably, between low grade and high grade 
meningioma, instead of the desired discrete segregation 
a significant overlap was observed. The overlapping sam-
ples in the intersection of the low grade and high grade 
cohort could help draw multiple inferences. One hypoth-
esis could be that it represents the transition phase 
between the grades, multiple sub-types, or heterogene-
ity. However, the list of protein markers has the poten-
tial to comprehend and unveil the underlying molecular 
pattern, thus, assisting in efficient segregation of menin-
gioma tumors. Conversely, the peptide level classifica-
tion rather than the protein level in 51 serum samples 
shows better segregation between the low and high grade 
meningioma with few overlapping samples. Another 
interesting observation is the overlap and commonali-
ties between normal and low grade meningioma which 
is also perhaps the reason that early onset and drastic 
alteration of proteome profile in the bloodstream in the 
benign stage is not much reported. Similarly, the high 
grade meningioma cohort had overlap with GBM rather 
than with meningioma, representing the commonalities 
between the aggressiveness of the two different and most 
prevalent brain tumors.

Though the list of all these proteins from both serum 
and tissues are reported as markers in literature and 
holds biological relevance, a smaller and more precise 
panel could help in further validation and clinical impli-
cation. Both feature selection and statistical analysis 
have been performed to select a small subset of 15 and 
12 best classifiers for tissue and serum, evaluated using 
SVM classification strategy. Among the top 15 protein 
markers identified in tissue samples, in high grade and 
low grade comparison, Mucins (MUC), Annexin A1 
and S100 protein were also present. These are reported 
IHC markers for meningioma and other cancer diagno-
ses [47, 48]. Mucin plays an active role in protecting the 
epithelial cell layers, and different studies suggest their 
role in malignancy by inhibiting stress-induced apoptosis 
and regulating gene transcriptions [49]. Clinical reports 

and studies have validated the importance of Mucin in 
meningioma diagnosis [50]. Our study identified mucins 
like MUC1, MUC4, and MUC5A as significantly altered 
proteins in meningioma grade comparison. In addition, 
MUC1 and MUC4 were identified as top-ranked clas-
sifiers with the best segregation in pair feature projec-
tion plots. Annexin A1 (ANXA1) is a known regulator 
in brain tumors like glioblastoma and assists in tumor 
immune escape through enhanced IL8 production and 
NF-kB (p65) activation [51, 26]. We have observed its 
higher expression levels in high grade samples and high 
scores of gini index and gain ratio to classify the low 
and high grades. Another potential cancer marker S100 
calcium-binding protein A11 (S100A11), reported in all 
types of cancer and have a significant correlation with 
tumor-associated macrophages (TAM), tumor-asso-
ciated fibroblasts (TAF), and Treg cells [52]. It has also 
been reported in the context of Meningioma and Glio-
blastoma tumor progression and unfavorable progres-
sion [12] and [53]. In this study, S100A11 was found to 
be significantly upregulated in high grade meningioma. 
It also showed maximum segregation between the grades 
along with Spectrin beta chain (SPTB2) in the pair fea-
ture projection plot. Using these diagnostic markers like 
MUC1, S100A11, and ANXA1, this approach could be 
tested out as an alternative to confirm the early prognosis 
of Meningioma.

Apart from these markers, Plectin (PLEC) and Profilin 
1 (PFN1) that are previously reported as metastasis regu-
lators in different cancers [54, 55], showed differential 
expression in our study. Plectin, a cytoskeleton and cell 
migration marker, have been observed to be down-regu-
lated in our high grade Meningioma samples. In a study 
by Perez et al., it has been reported that misregulation of 
plectin induces genomic instability and increased acti-
vation could eradicate malignancies [54] and thus refer-
ring to a hint that Plectin could be downregulated in high 
grade tumors. On the other hand, up-regulation of PFN1 
in high grade meningioma, could be connected with the 
stiffness of the extracellular matrix found in aggressive 
tumor tissues, which promotes proliferation [56]. More-
over, the overall biological network of the proteins such 
as Aldolase A and Spectrins, featured for ML classifica-
tion, regulates the Cadherin binding and is involved in 
cell adhesion.

Serum markers showed better segregation of grades 
in meningioma and a list of 12 proteins recorded a class 
accuracy of ~ 80%. We found an upregulation of Trans-
ferrin (TF) in low grade patients compared to high grade 
serum samples. According to the published reports, 
transferrin receptor 1 showed a higher expression in high 
grade tumor tissues of meningioma and different can-
cers [57, 58]. The higher grade of transferrin receptor 1 
expression indicates a higher degree of iron consumption 



Page 10 of 12Halder et al. Clinical Proteomics           (2023) 20:41 

and lower levels of transferrin in serum [59]. TF has also 
shown as one of the promising markers due to better 
segregation with high accuracy in ML, and could further 
be correlated with altered iron metabolism and its link 
with cancer progression and metastasis [60]. Similarly, 
Apolipoprotein B (APOB), which is significantly altered 
in meningioma in our study, has been associated with 
cancers and brain tumors [61, 62]. A study by Zhou et 
al. illustrated the importance of apolipoprotein profiles 
and serum ferritin in maintaining homeostasis where the 
relationship was studied in the context of brain tumors 
and aggressiveness [63]. Another serum protein found 
to be significantly altered in our study was Fibronectin 
(FN1). Though FN1 is altered in malignancies, its role 
has been poorly understood [64]. The combination of 
TF and FN1 has been identified as one of the important 
pair features and showed good classification of menin-
gioma grades. In addition to these markers, we identified 
Gelsolin (GSN) as a significantly downregulated protein 
in high grade meningioma. Despite GSN having been 
reported in meningioma multiple times, there has been 
no clarity regarding its expression in meningioma grades. 
However, a study published by Chiu et al. has reported 
lower expression of circulating GSN in Head and neck 
cancer and hypothesised that GSN is not only regulating 
cellular morphology but cell apoptosis as well [65].

In conclusion, we explored and validated the poten-
tial of different meningioma biomarkers reported in lit-
erature, repositories, and knowledgebases in serum and 
tissue samples in the Indian population. The clinical diag-
nosis of meningioma still relies majorly on immunohis-
tochemistry and gene mutation analysis despite the rapid 
advancement in the field of proteomics. Despite the pres-
ence of a long list of proteins with biomarker potential, 
only a few proteins truly showed potential to segregate 
the different grades of meningioma. Our observation of 
transitional tumors exhibiting characteristics of grade I 
and grade II meningioma in addition to the existing prob-
lem of tumor heterogeneity could be a significant obstacle 
challenging biomarker discovery. However, monitoring 
serum markers could be a step in the right direction for 
monitoring the progression of the patients in a non-inva-
sive manner. The successful validation of these proteins 
in a larger cohort of samples from different populations 
can help design the panel of protein biomarkers for early 
diagnosis and prognosis of meningioma.
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