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Abstract 

Prostate cancer (PCa) is the second most common cancer in males worldwide. The risk stratification of PCa is mainly 
based on morphological examination. Here we analyzed the proteome of 667 tumor samples from 487 Chinese PCa 
patients and characterized 9576 protein groups by PulseDIA mass spectrometry. Then we developed a pathway activ-
ity-based classifier concerning 13 proteins from seven pathways, and dichotomized the PCa patients into two sub-
types, namely PPS1 and PPS2. PPS1 is featured with enhanced innate immunity, while PPS2 with suppressed innate 
immunity. This classifier exhibited a correlation with PCa progression in our cohort and was further validated by two 
published transcriptome datasets. Notably, PPS2 was significantly correlated with poor biochemical recurrence (BCR)/
metastasis-free survival (log-rank P-value < 0.05). The PPS2 was also featured with cell proliferation activation. Together, 
our study presents a novel pathway activity-based stratification scheme for PCa.
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Introduction
Prostate cancer (PCa) is the second most common malig-
nancy with the fifth-highest mortality among the male 
population worldwide [1]. The difficulty of studying 
prostate cancer is the scarcity of survival data. The Glea-
son scoring system/International Society of Urological 

Pathology (ISUP) grade is widely used to predict survival 
outcomes [2]. PCa generally exhibits a more favorable 
prognosis compared to other malignant tumors, with 
5-year PCa-specific mortality-free survival rates exceed-
ing 90% for 1–4 ISUP grades [3]. However, accurately 
classifying ISUP grades presents challenges and is inher-
ently subjective, leading to inter- or intra-pathologist 
variability [4, 5]. Since this variability can lead to both 
under-grading or over-grading of Pca [5–7], more precise 
diagnostic tests are still in urgent needs.

Genomic and transcriptomic studies have proposed 
PCa classifications, based on genomic alterations such as 
SPOP, FOXA1, IDH1, and ETS fusion [8–11]. However, 
their prognosis values remain unclear. Recently, a multi-
omic study revealed that the high genomic heterogene-
ity could be buffered at the proteomic level [12]. Ankit 
et.al found that the proteomic features of prognostic 
biomarkers are superior to the genomic and transcrip-
tomic features in 76 PCa patients [13]. This finding is also 
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supported by several other cancer studies [13–16]. Thus, 
a comprehensive proteomic analysis of PCa is urgently 
needed. Also, rather than investigating a single gene or 
protein, a proteomic pathway activity-based analysis pro-
vides a deeper understanding of the molecular mecha-
nisms of PCa. Furthermore, the integration of protein 
complexes, pathways, and networks improves the pheno-
type prediction compared with a single protein as shown 
in COVID-19 [17]. However, no study has developed 
proteomic pathway-based clinical classifiers to facilitate 
the diagnosis or prognosis of PCa patients.

Data-independent acquisition mass spectrometry 
(DIA-MS)-based proteomics analysis has been widely 
used for the exploration of novel biomarkers and thera-
peutic targets [18]. PulseDIA, a combination of gas phase 
fractionation and DIA, can further improve the depth 
and robustness of proteomics compared with DIA [19]. 
Here, we profiled the proteome of 487 Chinese PCa 
patients using PulseDIA to explore new means of per-
forming risk prediction for PCa and  understanding the 
molecular mechanism of PCa development. The main 
objective of this study is to elucidate the molecular altera-
tions associated with prostate tumor survival. Indeed, 
our subtype cannot be directly applied in clinic at the 
moment; however, we anticipate that it has the potential 
to be implemented as an independent and complemen-
tary test for the Gleason scoring/ISUP grading.

Results and discussions
Quantitative proteomic analysis
We collected 667 formalin-fixed, paraffin-embed-
ded (FFPE) prostate tissue samples from 487 Chinese 
patients, including 182 paired tumor and adjacent benign 
samples, 271 unpaired tumor samples, and 32 unpaired 
adjacent benign samples (Additional file  1: Table  S1A). 
The tumor samples were graded using the International 
Society of Urological Pathology (ISUP) standard [2], 
ranging from grade 1 (GS ≤ 6) to 5 (GS ≥ 9) (Fig. 1A). We 
identified 9576 protein groups (corresponding to 7980 
unique proteins) by pressure cycle technology (PCT) 
coupled with PulseDIA [19] on a TripleTOF mass spec-
trometer (Fig.  1A). After removing proteins absent in 
more than 80% of the samples, 5360 protein groups and 
4413 unique proteins were quantified (Additional file  1: 

Table  S1B). Known PCa biomarkers were detected, 
including PSA (Fig. 1B). Our data also included nine pro-
teins from a 12-gene tissue-based diagnostic kit for PCa 
(Oncotype DX20) (Fig. 1B). These proteins are associated 
with the androgen pathway, cellular organization, prolif-
eration, and stromal response [20]. The median correla-
tion coefficients of the quality control samples (mouse 
liver samples for PCT quality control and pool samples 
for LC–MS/MS control) were over 0.95 (Fig.  1C). The 
random distribution of all samples (Fig. 1D), mouse liver 
samples (Fig. 1E), and pool samples (Fig. 1F) showed few 
batch effects among different batches in the processes 
of sample preparation and proteomics data acquisition, 
respectively. All of the quality control analyses suggested 
that the MS data was of high quality. The protein intensity 
distributions among different sample types (Fig. 1G) were 
similar, including tumor and normal samples (Fig.  1H), 
and different ISUP grades (Fig. 1I). However, more pro-
teins were identified in the tumor samples (Fig.  1J) and 
the higher GS groups (Fig.  1K) on average, which was 
consistent with the previous study [21].

Proteomic pathway‑based stratification for PCa
We focused on the pathways that are most significantly 
affected in PCa. Firstly, we identified 733 differentially 
expressed proteins (DEPs) between  the tumor and 
benign groups (Additional file  1: Table  S2A), which 
were mainly enriched in EIF2 signaling, amino acid 
metabolism, oxidative phosphorylation, and splic-
ing associated pathways (Additional file  2: Figure 
S1A). In our analysis of tumor samples across the five 
ISUP grades, we utilized ANOVA (Additional file  1: 
Table  S2B) to identify 348 DEPs. These DEPs were 
then classified into ten clusters using the Mfuzz (ver-
sion 2.48.0) package [22] (Additional file 2: Figure S1B). 
To explore the trends in these DEPs across  different 
grades, we selected four clusters. Protein clusters 8 and 
10 demonstrated a consistent increase from grades 1 to 
5, whereas protein clusters 2 and 5 displayed a decreas-
ing trend (Additional file  2: Figure S1B). We found 
a total of 28 DEPs (Fig.  2A) that  overlapped from the 
previously described two comparisons: between tumor 
and benign groups, and among five grades (clusters 
2, 5, 8, 10). Some of them were enriched in the renal 

(See figure on next page.)
Fig. 1 A Study design of the molecular classification for PCa. A total of 453 FFPE prostate tissue samples from 5 different ISUP grades and 214 
benign samples were used for proteomic analysis. B The median protein abundance of each protein across all samples. C The Pearson correlation 
distribution of the quality control samples including the mouse liver (ML) samples and pool PCa samples. D–F PCA plots for 44 batches, including all 
samples (D), ML samples (E), and pool PCa samples (F). G Density plot for each PCa type. H–I Protein quantification between different ISUP grades 
(H) and sample types (I).  J–K The number of proteins identified in the tumor and adjacent benign samples (J), and in the different ISUP grades (K). 
P-value: * < 0.05; ** < 0.01; *** < 0.001. T, tumor samples; N, adjacent benign samples
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Fig. 1 (See legend on previous page.)



Page 4 of 10Sun et al. Clinical Proteomics           (2023) 20:50 

Fig. 2 Proteomic pathway-based classifier. A Heatmap of 28 overlapping proteins that were significantly differentially expressed between tumor 
and adjacent benign samples (B-H adjusted P-value < 0.05, fold change > 2 or < 0.5), and 4 clusters (cluster 2, 5, 8, 10 in Additional file 2: Figure 
S1B) from mFuzz analysis (one-way ANOVA, B-H  adjusted P-value < 0.05). Proteins that exhibit an increasing trend with ISUP grades are indicated 
by the color red, while those with a decreasing trend are represented by blue. Proteins that were not detected in our dataset are denoted by gray. 
Different shapes reflects the diverse biological functions of the proteins. B The protein–protein interaction network of the 28 proteins from STRING. 
C An unsupervised classifier based on proteomic pathways. D–E The t-SNE shows the distribution of all tumor samples using ISUP standard 
and the pathway-based classifier. The classifier was based on the selected 13 proteins shown in Fig. 2A. F The overlay of proteomic pathway-based 
subtypes using the ISUP classification standard for PCa
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and urological disease associated network (Fig.  2B). 
Among them, STMN1 [23] and HMGB3 [24] can pro-
mote the proliferation and metastasis of PCa tumor 
cells. FBL [25] and RBMX/RBMXL1 [26] all partici-
pate in RNA splicing and translation, which have been 
reported to be highly expressed in PCa and regulated 
by MYC. SHMT2 catalyzes serine decomposition to 
regulate metabolic reprogramming by the STAT3/
SHMT2/PKM2 pathway [27]. SOD3 [28], PRSS8 [29], 
and GSTM2 [30] act as oncogenes in PCa, while down-
regulation of S100A8 [31], S100A9 [31], and MYL9 [32] 
is associated with a poor prognosis in PCa.

These 28 DEPs were enriched in eight dysregulated 
pathways (Additional file  1: Table  S3A, B), including 
epithelial mesenchymal transition (EMT), myogen-
esis, interferon-gamma response, complement, G2M 
checkpoint, E2F targets, mTORC1 signaling, and MYC 
targets (Fig.  2C). However, only 13 proteins appeared 
in these eight pathways. Specifically, the  pathways 
G2M checkpoint and E2F target only showed  enrich-
ment for two identical proteins. The  activation of the 
E2F signaling pathway has been positively linked to 
androgen-dependent PCa metastasis [33]. Thus, we 
have preserved the E2F target pathway, and the sub-
sequent analysis was conducted based on a classi-
fier using seven pathways and 13 proteins. Compared 
to previous genomic and proteomic studies on PCa  
[8–12, 21, 34–37], our study analyzed the largest 
patient cohort and developed a pathway-based classi-
fier that is  associated with prognosis. The seven path-
ways involved  have been sporadically reported to be 
linked with PCa. Among these, EMT, myogenesis, and 
inflammation-related pathways have been associated 
with a poor prognosis in PCa [37]. MYC has also been 
associated with the malignancy of PCa, while promot-
ing TMPRSS2-ERG fusion [38]. The pathway enrich-
ment scores of the seven pathways were estimated in 
each sample using gene set variation analysis (GSVA). 
According to the score, the 478 tumor samples were 
optimally classified into two groups (Additional file  2: 
Figure S2), namely PPS1 and PPS2. Although 13 DEPs 
were insufficient to differentiate between ISUP grades 
(Fig. 2D), our proteomic pathway activity-based classi-
fier was able to effectively categorize PCa patients into 
two distinct groups (Fig. 2E). Our analysis revealed that 
PPS1 had a higher proportion of low-risk PCa patients 
(ISUP grades 1–3) and a lower proportion of high-risk 
patients (ISUP grades 4–5). (Fig. 2F). PPS1 is character-
ized by innate immune activation, while MYC targets, 
and mTORC1 signaling are activated in PPS2 (Fig. 2C). 
Our data suggested that innate immunity might be 
activated in low-grade patients, while cell proliferation 

associated signaling pathways were activated in high-
grade PCa patients.

Innate immune suppression and cell proliferation 
activation predicted short BCR‑free survival in PCa patients
To assess whether the seven pathway-based classifier can 
be used for prognosis prediction, we validated it using 
two transcriptomic datasets with follow-up records 
from Western cohorts, one is the MSK-IMPACT clini-
cal sequencing cohort (MSKCC) and the other is from 
TCGA. For the aforementioned 13 proteins, they were 
found in both datasets (Fig.  3A for MSKCC, 4A for 
TCGA). They were all enriched into the same seven path-
ways. A total of 140 tumor samples (from MSKCC) and 
476 tumors (from TCGA) were classified into two sub-
types (PPS1 and PPS2) based on the enrichment scores 
of the seven pathways using the transcriptomic data 
(Additional file 1: Table S3 C–D, Figs. 3B, 4B). While 13 
DEPs were insufficient for differentiating between ISUP 
grades (Figs.  3C, 4C), our proteomic pathway activity-
based classifier was able to effectively categorize PCa 
patients into two distinct groups (Figs.  3D, 4D). We 
determined the PCa pathological grades for each sample 
following the D’Amico [39] and ISUP [2] standards and 
compared them with our proteomic pathway-based clas-
sifier (Figs. 3E, F, 4E, F). PPS1 contained more low-grade 
PCa patients (ISUP grades 1, 2, 3), and fewer high-grade 
patients (ISUP grades 4, 5) (Figs. 3E, 4E, F). However, in 
the MSKCC dataset, patients with higher grades do not 
have an advantage in terms of proportion in PPS1 com-
pared to PPS2 (Fig.  3F). This may be due to the imbal-
ance of high-grade and low-grade patients in the MSKCC 
dataset (high vs low = 0.10), which is not as balanced as 
our proteomic dataset (high vs low = 0.59) and the TCGA 
dataset (high vs low = 0.68). Further validation in depend-
ent and larger patient cohorts is needed. Innate immune 
was suppressed and cell proliferation associated pathways 
were activated in the PPS2 (Figs.  3B, 4B). Interestingly, 
PPS2 in both datasets had significantly shorter biochemi-
cal recurrence (BCR)-free survival than the other two 
subtypes (log-rank p = 0.012 in MSKCC, Fig. 3G; and log-
rank p = 0.001 in TCGA, Fig. 4E). Further, in the TCGA 
database, PPS2 also showed poor metastasis free survival 
(Fig. 4H).

Additionally, we compared the mutations and copy 
number alterations (CNAs) in the seven pathways of 
the two subtypes using genomic data from TCGA and 
MSKCC. The highest CNA burden was found in PPS2 
in both datasets (Additional file  2: Figure S3A), which 
exhibited a poorer prognosis. However, the genomic 
alteration patterns (Additional file 2: Figure S3A) and the 
main cluster-specific mutated genes varied between the 
two datasets (Additional file 2: Figure S3B). This finding 
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Fig. 3 The validation of the proteomic pathways-based classifier in the MSKCC dataset. A Heatmap showing the expression of 13 transcripts. The 
expression of transcript was normalized by Z-score across all PCa patients. B Unsupervised classification based on 13 transcripts enriched pathways 
at the transcriptomic level. C–D The t-SNE plots show the distribution of all tumor samples based on the ISUP standard and the pathway-based 
classifier utilizing the selected 13 transcripts, as depicted in Fig. 3A. E–F Overlay of proteomic-pathway-based subtypes with D’amico (E) and ISUP 
(F) classification standard for PCa. G Kaplan–Meier curves for the BCR-free survival between the two subtypes
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agrees with our previous finding that high genomic het-
erogeneity could be buffered at the proteomic level [12].

Altogether, our results demonstrate that PPS2 
with the poorest prognosis was characterized by the 

suppression of innate immunity, which was consist-
ent across multi-omic levels. The seven-pathway based 
classifier might be used for prognostic prediction in 

Fig. 4 The validation of the proteomic pathways-based classifier in the TCGA dataset. A Heatmap showing the expression of 13 transcripts. The 
expression of transcript was normalized by Z-score across all PCa patients. B Unsupervised classification based on 13 transcripts enriched pathways 
at the transcriptomic level. C–D The t-SNE plots show the distribution of all tumor samples based on the ISUP standard and the pathway-based 
classifier utilizing the selected 13 transcripts, as depicted in Fig. 4A. E–F Overlay of proteomic-pathway-based subtypes with D’amico (E) and ISUP 
(F) classification standard for PCa. G–H Kaplan–Meier curves for the BCR-free (G) and metastasis-free (H) survival between the two subtypes
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clinics. More validations in prospective clinical trials 
will be required in the future.

Conclusions
In summary, this study presents a seven-pathway-based 
classifier for PCa prognosis prediction. Notably, this clas-
sifier may predict BCR/metastasis-free survival and has 
been validated in two transcriptomic datasets. This study 
also uncovers dysregulated proteins and pathways associ-
ated with PCa progression, which might be a resource for 
mining novel therapeutic targets for PCa. Pathway-based 
classification, to some extent, may alleviate the chal-
lenges posed by proteins that are not detectable by mass 
spectrometry in certain samples. Furthermore, the prot-
eomic pathway-based stratification of PCa offers valuable 
insights into the tumor biology of this cancer.

Materials and methods
Peptide sample preparation and pulseDIA analysis
Protein extraction and peptide digestion were performed 
as the described  previously [40]. In brief, about 0.5  mg 
of FFPE PCa samples were processed to obtain  clean 
peptides through dewaxing, rehydration, protein dena-
turation, and digestion. The clean peptide samples were 
separated using the Eksigent NanoLC 400 system. The 
parameters of the LC system were kept as in a previous 
study [41]. Peptides were introduced into the TripleTOF 
6600 (Sciex) with a DuoSprary source replumbed using 
25  µM ID hybrid electrodes to minimize postcolumn 
dead volume. The mass ranges for acquiring the MS1 and 
MS2 spectra were 350–1250  m/z, and 100–1500  m/z, 
respectively. A 70-variable Q1 isolation window scheme 
was set, and the accumulation time was set to 20 ms per 
isolation window.

Before the raw file interpretation, an in-silico DIA-
based library was built. Firstly, the raw files were con-
verted to the mzML format using MSConvert. The 
DIA-NN (1.8.0-Linux version) was then used to con-
struct the DIA-based library using a library-free strategy. 
Next, the algorithm parameters were set to “unrelated 
runs” and “match-between-runs (MBR)”. Mass accuracy, 
MS1 accuracy, and scan window were set to 0 to allow 
for the automatic optimization by DIA-NN. Trypsin was 
selected as the digestion enzyme, and missed cleavages 
were set to 1. Carbamidomethylation was set as a fixed 
modification, while N-term methylation excision and 
methionine oxidation were set as variable modifications. 
The false discovery rates (FDRs) for peptides and pro-
teins were set to 1%. Other parameters were left to their 
default values, with the exception of “protein inference”, 
which  was set to “protein names” (from FASTA). The 
background used  was a human FASTA file downloaded 

from the UniProt proteome dataset on January  26th, 
2020.

The raw files were then re-searched using our in-silico 
DIA-based library. The parameters were set as in the 
above-described step. Next, the peptide files were com-
bined as described in a published report [19]. After filter-
ing out the proteins missing in over 80% of the samples, 
the remaining 5360 proteins were used in the subse-
quent analyses. The missing values were imputed by the 
sequential k-Nearest Neighbor method [42].

Pathway analysis
The pathway enrichment of the differentially expressed 
proteins (DEPs) was performed using STRING [43] 
(Additional file 2: Figure S1A, 2B). The most significantly 
enriched pathways had a p-value < 0.05 and contained at 
least two proteins from our dataset.

Statistical analysis
A two-sided unpaired Welch’s t-test was used for the 
comparison between the two groups. The one-way anal-
ysis of variance (ANOVA) was used to determine the 
difference among different GS grades. P-values were 
adjusted by the Benjamini & Hochberg method.

Mfuzz analysis
The average protein quantities in each GS grade were 
used for fuzzy c-means clustering with the R (version 
4.0.2) package Mfuzz (version 2.48.0). The number of 
clusters was set to ten and the fuzzifier coefficient, M, 
was set to 1.25.

Proteomic‑based clustering analysis
The enrichment analysis of pathways was performed 
using the “enricher” function from the “clusterProfiler” 
package [44] (default parameters) with the utilization of 
the 50 hallmark gene sets downloaded from MsigDB [45] 
(Molecular Signature Database v7.4). For the proteomic 
data, enrichment was conducted using the “gsva” method 
within the GSVA framework [46]. Similarly, for the tran-
scriptomic data, enrichment was performed using the 
Pathway Level analysis of Gene Expression method. Each 
pathway was required to include a minimum of two pro-
teins or transcripts to be considered. The activation score 
of each pathway was calculated using GSVA, considering 
the identified proteins or transcripts associated with the 
respective pathway.

We performed K-means clustering (with the “kmeans” 
function in R), consensus clustering (the “consensus-
ClusterPlus” package in R), and NbClust testing (the 
“NbClust” function in R) to determine the optimal num-
ber of stable PCa subtypes. We scaled each sample to 
cluster them based on the constituent pattern of each 
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pathway. Then consensus clustering was used to assess 
the robustness of the K-means clustering (1000 interac-
tions, 80% resampling). NbClust testing provided 30 dif-
ferent test methods for determining the optimal number 
of clusters. A silhouette analysis was then performed to 
confirm the robustness of the clustering.

Cox regression model
We first excluded samples without survival follow-up 
data. Then, we randomly divided the data into a train-
ing set (80% of the samples) and a test set (20% of the 
samples). Using the training data, we constructed a Cox 
model and applied it to predict the risk scores for the 
test data. Subsequently, based on the median of the risk 
scores in the test dataset, the samples were divided into 
high- and low-risk groups. Finally, Kaplan–Meier curves 
were generated for the high- and low-risk groups in the 
test dataset.

Comparison of oncogenic pathway alteration frequencies 
among subtypes
Seven signaling pathways consisting of 13 genes were 
evaluated. For each PCa subtype, we computed the frac-
tion of samples with at least one alteration in each of 
the seven signaling pathways and then compared the 
two subtypes. A tumor sample was considered pathway-
altered if one or more genes from a specific pathway con-
tained a recurrent or known driver alteration.
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*** <0.001.

Acknowledgements
We thank the Mass Spectrometry & Metabolomics Core Facility at the Center 
for Biomedical Research Core Facilities of Westlake University for peptide frac-
tionation and Westlake University Supercomputer Center for assistance in data 

storage and computation. We thank ChatGPT for the linguistic refinement of 
this manuscript in terms of grammar.

Author contributions
TG, and RS designed the project. RS, ZX, and XC performed the experiments. 
LT, RS, XD, and SL conducted the proteomic data analysis. RS wrote the manu-
script. TG, XD, and JA revised the manuscript. TG supervised the project.

Funding
This work is supported by grants from the National Key R&D Program of China 
(No. 2021YFA1301602, 2020YFE0202200), the Key Research and Development 
Program of Zhejiang Province (Grant No. 2022C03037). 

Availability of data and materials
The MSK-IMPACT clinical sequencing cohort (MSKCC) were downloaded 
from cBioPortal [34], while the TCGA data were downloaded from the portal: 
https:// xenab rowser. net/. The MS-based proteomic data have been deposited 
to the iProX (IPX0003801001).

Declarations

Ethics approval and consent to participate
A total of 667 FFPE samples were purchased from Shanghai Outdo Biotech 
Co., Ltd. The study was approved by the ethics committee of Westlake Univer-
sity and Shanghai Outdo Biotech Co., Ltd.

Competing interests
T.G. is a shareholder of Westlake Omics Inc. L.T. is an employee of Westlake 
Omics Inc. The other authors declare no competing interests in this paper.

Received: 26 January 2023   Accepted: 25 October 2023

References
 1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. 

Global cancer statistics 2020: GLOBOCAN estimates of incidence and 
mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 
2021;71(3):209–49.

 2. Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, et al. 
The 2014 International Society of Urological Pathology (ISUP) Consensus 
Conference on Gleason Grading of Prostatic Carcinoma: Definition of 
Grading Patterns and Proposal for a New Grading System. Am J Surg 
Pathol. 2016;40(2):244–52.

 3. Erickson A, Sandeman K, Lahdensuo K, Nordling S, Kallajoki M, Seikkula H, 
et al. New prostate cancer grade grouping system predicts survival after 
radical prostatectomy. Hum Pathol. 2018;75:159–66.

 4. Allsbrook WC Jr, Mangold KA, Johnson MH, Lane RB, Lane CG, Amin MB, 
et al. Interobserver reproducibility of Gleason grading of prostatic carci-
noma: urologic pathologists. Hum Pathol. 2001;32(1):74–80.

 5. Melia J, Moseley R, Ball RY, Griffiths DF, Grigor K, Harnden P, et al. A UK-
based investigation of inter- and intra-observer reproducibility of Gleason 
grading of prostatic biopsies. Histopathology. 2006;48(6):644–54.

 6. Ozkan TA, Eruyar AT, Cebeci OO, Memik O, Ozcan L, Kuskonmaz I. Interob-
server variability in Gleason histological grading of prostate cancer. Scand 
J Urol. 2016;50(6):420–4.

 7. Egevad L, Ahmad AS, Algaba F, Berney DM, Boccon-Gibod L, Comperat E, 
et al. Standardization of Gleason grading among 337 European patholo-
gists. Histopathology. 2013;62(2):247–56.

 8. Cancer Genome Atlas Research N. The molecular taxonomy of primary 
prostate cancer. Cell. 2015;163(4):1011–25.

 9. Li J, Xu C, Lee HJ, Ren S, Zi X, Zhang Z, et al. A genomic and epi-
genomic atlas of prostate cancer in Asian populations. Nature. 
2020;580(7801):93–9.

 10. Stelloo S, Nevedomskaya E, Kim Y, Schuurman K, Valle-Encinas E, Lobo 
J, et al. Integrative epigenetic taxonomy of primary prostate cancer. Nat 
Commun. 2018;9(1):4900.

https://doi.org/10.1186/s12014-023-09441-w
https://doi.org/10.1186/s12014-023-09441-w
https://xenabrowser.net/


Page 10 of 10Sun et al. Clinical Proteomics           (2023) 20:50 

•
 
fast, convenient online submission

 •
  

thorough peer review by experienced researchers in your field

• 
 
rapid publication on acceptance

• 
 
support for research data, including large and complex data types

•
  

gold Open Access which fosters wider collaboration and increased citations 

 
maximum visibility for your research: over 100M website views per year •

  At BMC, research is always in progress.

Learn more biomedcentral.com/submissions

Ready to submit your researchReady to submit your research  ?  Choose BMC and benefit from: ?  Choose BMC and benefit from: 

 11. Fraser M, Sabelnykova VY, Yamaguchi TN, Heisler LE, Livingstone J, Huang 
V, et al. Genomic hallmarks of localized, non-indolent prostate cancer. 
Nature. 2017;541(7637):359–64.

 12. Charmpi K, Guo T, Zhong Q, Wagner U, Sun R, Toussaint NC, et al. Conver-
gent network effects along the axis of gene expression during prostate 
cancer progression. Genome Biol. 2020;21(1):302.

 13. Sinha A, Huang V, Livingstone J, Wang J, Fox NS, Kurganovs N, et al. 
The proteogenomic landscape of curable prostate cancer. Cancer Cell. 
2019;35(3):414-27 e6.

 14. Gao Q, Zhu H, Dong L, Shi W, Chen R, Song Z, et al. Integrated proteog-
enomic characterization of hbv-related hepatocellular carcinoma. Cell. 
2019;179(2):561-77 e22.

 15. Xu JY, Zhang C, Wang X, Zhai L, Ma Y, Mao Y, et al. Integrative proteomic 
characterization of human lung adenocarcinoma. Cell. 2020;182(1):245-
61 e17.

 16. Jiang Y, Sun A, Zhao Y, Ying W, Sun H, Yang X, et al. Proteomics identifies 
new therapeutic targets of early-stage hepatocellular carcinoma. Nature. 
2019;567(7747):257–61.

 17. Gao J, He J, Zhang F, Xiao Q, Cai X, Yi X, et al. Integration of protein 
context improves protein-based COVID-19 patient stratification. Clin 
Proteomics. 2022;19(1):31.

 18. Guo T, Kouvonen P, Koh CC, Gillet LC, Wolski WE, Rost HL, et al. Rapid 
mass spectrometric conversion of tissue biopsy samples into permanent 
quantitative digital proteome maps. Nat Med. 2015;21(4):407–13.

 19. Cai X, Ge W, Yi X, Sun R, Zhu J, Lu C, et al. PulseDIA: data-independent 
acquisition mass spectrometry using multi-injection pulsed gas-phase 
fractionation. J Proteome Res. 2021;20(1):279–88.

 20. Knezevic D, Goddard AD, Natraj N, Cherbavaz DB, Clark-Langone KM, 
Snable J, et al. Analytical validation of the oncotype DX prostate cancer 
assay—a clinical RT-PCR assay optimized for prostate needle biopsies. 
BMC Genomics. 2013;14:690.

 21. Iglesias-Gato D, Wikstrom P, Tyanova S, Lavallee C, Thysell E, Carls-
son J, et al. The proteome of primary prostate cancer. Eur Urol. 
2016;69(5):942–52.

 22. Kumar L, Matthias EF. Mfuzz: a software package for soft clustering of 
microarray data. Bioinformation. 2007;2(1):5–7.

 23. Chakravarthi B, Chandrashekar DS, Agarwal S, Balasubramanya SAH, 
Pathi SS, Goswami MT, et al. miR-34a regulates expression of the stath-
min-1 oncoprotein and prostate cancer progression. Mol Cancer Res. 
2018;16(7):1125–37.

 24. Yamada Y, Nishikawa R, Kato M, Okato A, Arai T, Kojima S, et al. Regula-
tion of HMGB3 by antitumor miR-205-5p inhibits cancer cell aggres-
siveness and is involved in prostate cancer pathogenesis. J Hum Genet. 
2018;63(2):195–205.

 25. Koh CM, Gurel B, Sutcliffe S, Aryee MJ, Schultz D, Iwata T, et al. Alterations 
in nucleolar structure and gene expression programs in prostatic neopla-
sia are driven by the MYC oncogene. Am J Pathol. 2011;178(4):1824–34.

 26. Matsunaga S, Takata H, Morimoto A, Hayashihara K, Higashi T, Akatsuchi 
K, et al. RBMX: a regulator for maintenance and centromeric protection of 
sister chromatid cohesion. Cell Rep. 2012;1(4):299–308.

 27. Marrocco I, Altieri F, Rubini E, Paglia G, Chichiarelli S, Giamogante F, et al. 
Shmt2: a Stat3 signaling new player in prostate cancer energy metabo-
lism. Cells. 2019;8(9):1048.

 28. Kim J, Mizokami A, Shin M, Izumi K, Konaka H, Kadono Y, et al. SOD3 acts 
as a tumor suppressor in PC-3 prostate cancer cells via hydrogen perox-
ide accumulation. Anticancer Res. 2014;34(6):2821–31.

 29. Andor N, Graham TA, Jansen M, Xia LC, Aktipis CA, Petritsch C, et al. Pan-
cancer analysis of the extent and consequences of intratumor heteroge-
neity. Nat Med. 2016;22(1):105–13.

 30. Takahashi S, Suzuki S, Inaguma S, Ikeda Y, Cho YM, Hayashi N, et al. Down-
regulated expression of prostasin in high-grade or hormone-refractory 
human prostate cancers. Prostate. 2003;54(3):187–93.

 31. Minner S, Hager D, Steurer S, Hoflmayer D, Tsourlakis MC, Moller-Koop 
C, et al. Down-regulation of S100A8 is an independent predictor of PSA 
recurrence in prostate cancer treated by radical prostatectomy. Neopla-
sia. 2019;21(9):872–81.

 32. Wang JH, Zhang L, Huang ST, Xu J, Zhou Y, Yu XJ, et al. Expression and 
prognostic significance of MYL9 in esophageal squamous cell carcinoma. 
PLoS ONE. 2017;12(4): e0175280.

 33. Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, et al. Ele-
vated E2F1 inhibits transcription of the androgen receptor in metastatic 
hormone-resistant prostate cancer. Cancer Res. 2006;66(24):11897–906.

 34. Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, et al. 
Integrative genomic profiling of human prostate cancer. Cancer Cell. 
2010;18(1):11–22.

 35. Latonen L, Afyounian E, Jylha A, Nattinen J, Aapola U, Annala M, et al. 
Integrative proteomics in prostate cancer uncovers robustness against 
genomic and transcriptomic aberrations during disease progression. Nat 
Commun. 2018;9(1):1176.

 36. Meng J, Lu X, Jin C, Zhou Y, Ge Q, Zhou J, et al. Integrated multi-omics 
data reveals the molecular subtypes and guides the androgen recep-
tor signalling inhibitor treatment of prostate cancer. Clin Transl Med. 
2021;11(12): e655.

 37. Lapointe J, Li C, Giacomini CP, Salari K, Huang S, Wang P, et al. Genomic 
profiling reveals alternative genetic pathways of prostate tumorigenesis. 
Cancer Res. 2007;67(18):8504–10.

 38. Rebello RJ, Pearson RB, Hannan RD, Furic L. Therapeutic approaches 
targeting MYC-driven prostate cancer. Genes. 2017;8(2):71.

 39. D’Amico AV, Whittington R, Malkowicz SB, Schultz D, Blank K, Broderick 
GA, et al. Biochemical outcome after radical prostatectomy, external 
beam radiation therapy, or interstitial radiation therapy for clinically local-
ized prostate cancer. JAMA. 1998;280(11):969–74.

 40. Zhu Y, Weiss T, Zhang Q, Sun R, Wang B, Yi X, et al. High-throughput 
proteomic analysis of FFPE tissue samples facilitates tumor stratification. 
Mol Oncol. 2019;13(11):2305–28.

 41. Sun R, Hunter C, Chen C, Ge W, Morrice N, Liang S, et al. Accelerated 
protein biomarker discovery from FFPE tissue samples using single-shot, 
short gradient microflow SWATH MS. J Proteome Res. 2020;19(7):2732–41.

 42. Kim KY, Kim BJ, Yi GS. Reuse of imputed data in microarray analysis 
increases imputation efficiency. BMC Bioinformatics. 2004;5:160.

 43. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, et al. The 
STRING database in 2021: customizable protein-protein networks, and 
functional characterization of user-uploaded gene/measurement sets. 
Nucleic Acids Res. 2021;49(D1):D605–12.

 44. Yu G, Wang LG, Han Y, He QY. clusterProfiler: an R package for comparing 
biological themes among gene clusters. OMICS. 2012;16(5):284–7.

 45. Liberzon A, Birger C, Thorvaldsdottir H, Ghandi M, Mesirov JP, Tamayo P. 
The molecular signatures database (MSigDB) hallmark gene set collec-
tion. Cell Syst. 2015;1(6):417–25.

 46. Hanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for 
microarray and RNA-seq data. BMC Bioinf. 2013;14:7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.


	A pathway activity-based proteomic classifier stratifies prostate tumors into two subtypes
	Abstract 
	Introduction
	Results and discussions
	Quantitative proteomic analysis
	Proteomic pathway-based stratification for PCa
	Innate immune suppression and cell proliferation activation predicted short BCR-free survival in PCa patients

	Conclusions
	Materials and methods
	Peptide sample preparation and pulseDIA analysis
	Pathway analysis
	Statistical analysis
	Mfuzz analysis
	Proteomic-based clustering analysis
	Cox regression model
	Comparison of oncogenic pathway alteration frequencies among subtypes

	Anchor 17
	Acknowledgements
	References


