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Abstract
Background Cardio-metabolic disorders (CMDs) are common in aging people and are pivotal risk factors for 
cardiovascular diseases (CVDs). Inflammation is involved in the pathogenesis of CVDs and aging, but the underlying 
inflammatory molecular phenotypes in CMDs and aging are still unknown.

Method We utilized multiple proteomics to detect 368 inflammatory proteins in the plasma of 30 subjects, including 
healthy young individuals, healthy elderly individuals, and elderly individuals with CMDs, by Proximity Extension 
Assay technology (PEA, O-link). Protein-protein interaction (PPI) network and functional modules were constructed to 
explore hub proteins in differentially expressed proteins (DEPs). The correlation between proteins and clinical traits of 
CMDs was analyzed and diagnostic value for CMDs of proteins was evaluated by ROC curve analysis.

Result Our results revealed that there were 161 DEPs (adjusted p < 0.05) in normal aging and EGF was the most 
differentially expressed hub protein in normal aging. Twenty-eight DEPs were found in elderly individuals with CMDs 
and MMP1 was the most differentially expressed hub protein in CMDs. After the intersection of DEPs in aging and 
CMDs, there were 10 overlapping proteins: SHMT1, MVK, EGLN1, SLC39A5, NCF2, CXCL6, IRAK4, REG4, PTPN6, and 
PRDX5. These proteins were significantly correlated with the level of HDL-C, TG, or FPG in plasma. They were verified 
to have good diagnostic value for CMDs in aging with an AUC > 0.7. Among these, EGLN1, NCF2, REG4, and SLC39A2 
were prominently increased both in normal aging and aging with CMDs.

Conclusion Our results could reveal molecular markers for normal aging and CMDs, which need to be further 
expanded the sample size and to be further investigated to predict their significance for CVDs.
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Introduction
In an aging population, cardiovascular diseases (CVDs) 
have a high prevalence and will result in 40% of all 
deaths, ranking as the leading cause [1]. As an indepen-
dent risk factor for cardiovascular diseases, aging leads to 
progressive deterioration of the cardiovascular structure 
and function manifested as cardiac and vascular remod-
eling, dampened cardiac function, endothelial defects, 
and loss of vascular compliance [2, 3]. Cardiometabolic 
disorders (CMDs) are a cluster of risk factors significantly 
increasing the risk of CVDs, such as hyperlipidemia and 
hyperglycemia, which are common in elderly individuals 
[4]. Knowledge of the molecular mechanism common to 
normal aging and CMDs will assist in providing inter-
ventions to prevent or delay the onset of cardiovascular 
diseases. Identification of the molecular changes provides 
not only the potentially predicted risk factor for CMDs 
and even CVDs in normal aging but also provides clues 
on the molecular mechanism by which aging is involved 
in the pathogenesis of CMDs.

Increasing evidence supports the idea that aging ren-
ders the body in a state of low-grade inflammation with 
an upregulation of IL-6, TNF-α, and IL-8 [5, 6], which 
predicts frailty in older adults and is associated with 
the risk of mortality in healthy elderly individuals [7]. 
Chronic tissue inflammation, caused by senescent cell 
accumulation on-site through the secretion of proin-
flammatory growth factors, cytokines, and chemokines, 
contributes to the development of some aging-related 
diseases, including atherosclerosis, diabetes, and cancer 
[8]. Likewise, inflammation is a key factor in the initia-
tion of CMDs. Because systemic metabolic abnormali-
ties tend to be closely associated with fat accumulation in 
obesity, inflammatory pathway activation of adipose cells 
under stress increases proinflammatory cytokines (TNF-
α) and chemokines and local infiltration of immune cells, 
which reduces metabolic flexibility and impairs insu-
lin receptor signaling. This leads to a reduction in the 
removal of glucose from the bloodstream and increases 
lipolysis, contributing to hyperglycemia and hypertriglyc-
eridemia [9, 10]. Although some inflammatory proteins 
were reported to play an important role in both aging 
and CMDs, how their inflammatory molecular pheno-
types and their common molecular changes the common 
inflammatory molecular alteration is still unknown.

Circulating proteins store rich information regarding 
an individual’s pathophysiology since they are the final 
effectors of pathophysiological pathways. There are sev-
eral advanced technologies applied in plasma proteomics, 
such as mass spectrometry (MS)-based proteomics, a 
multiplexed proteomic assay using modified aptam-
ers (SOMAscan), and a proximity extension assay (PEA, 
O-Link) [11–13]. Of these, PEA technology possesses 
exceptional readout specificity and sensitivity (sub-pg/

mL), enabling high multiplex assays with coverage across 
a broad dynamic range (∼9 log) while consuming a mini-
mal amount of samples by using unique antibody–oli-
gonucleotide protein binding for quantitative real-time 
polymerase chain reaction (PCR)-based measurement 
[14, 15]. It has been used to detect plasma biomarkers for 
many disease types [16–19].

In our study, 368 inflammatory proteins in the plasma 
of healthy young (HY) individuals, healthy elderly (HE) 
individuals, and elderly individuals with CMDs were 
detected using PEA technology (O-link) to explore com-
prehensive inflammatory molecular phenotypes in the 
plasma of aging and CMDs and their common molecular 
expression, which may provide potential biomarkers for 
aging and CMDs and clues on the molecular mechanism 
by which aging is involved in the pathogenesis of CMDs.

Materials and methods
Subjects and samples
The schematic diagram shows the experimental design 
(Fig. 1). Thirty participants were recruited for this study, 
including 10 HY subjects (aged below 60 years), 10 HE 
subjects, and 10 elderly subjects with CMDs. CMDs refer 
to the pathological condition characterized by the aber-
rant coalescence of various metabolic elements within an 
individual, significantly increasing the susceptibility to 
cardiovascular diseases. These metabolic perturbations 
includes: (1) abdominal adiposity or adipose tissue excess, 
(2) atherogenic dyslipidemia (elevated triglycerides and 
reduced HDL-C), and (3) insulin resistance and/or dis-
turbances in glucose tolerance [20]. Elderly subjects were 
included in CMDs according to the following criteria: (1) 
triglycerides > 1.7 mmol/L or high-density lipoprotein 
cholesterol (HDL-C) < 1.04. (2) fasting plasma glucose 
(FPG)>5.6 mmol/L. (3) waist circumference ≥ 90  cm in 
men or ≥ 85 cm in women. As evidenced by physical and 
clinical examinations, the healthy young and elderly sub-
jects were in good health with normal metabolic level. 
The exclusion criteria were prior myocardial infarction 
or stroke, morbid obesity, tumor, administration of hypo-
glycemic drugs, lipid-lowering drugs, and/or immuno-
suppressive drugs. The plasma sample of subjects was 
processed following the protocol that was approved by 
the institutional review board of Tianjin Medical Univer-
sity General Hospital (Tianjin, China). Written informed 
consent was obtained from all participants.

Proteomic quantification
Protein concentrations were quantified using multiplex 
immunoassay, developed by O-link Proteomics (Uppsala, 
Sweden) and based on PEA technology. This assay con-
verts the measurement of protein concentration to Ct 
values using qPCR and then reports the protein concen-
tration as normalized protein expression (NPX) on a log2 
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scale by a normalization procedure. A customized multi-
plex panel was used to detect 368 inflammatory proteins.

Functional enrichment analysis
The Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID) function annotation tool 
(https://david.ncifcrf.gov) was used to perform Gene 
Ontology (GO) and Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathway analysis on DEPs. GO terms 
and KEGG pathways with Benjamini-corrected p val-
ues < 0.05 and FDR < 0.01 were considered significant.

PPI network construction and screening of hub proteins
The STRING database (http://string-db.org/) was used 
to search for the relationship between DEPs and con-
struct the PPI network with a combined score over 0.4, 
which was considered statistically significant. The PPI 
networks were visualized by Cytoscape (version 3.9.1) 
with a hiding of unconnected proteins. The key func-
tional modules of proteins in networks were analyzed by 
the molecular complex detection technology (MCODE) 
plug-in in Cytoscape with a degree cutoff = 2, node score 
cutoff = 0.2, k-score = 2, and max depth = 100. We assessed 
the top 10 or 15 proteins among the DEPs using seven 
algorithms, including MCC, MNC, degree, closeness, 
radiality, stress, and EPC, in the cytoHubba plug-in of 

Cytoscape. We considered the intersection of common 
proteins in seven algorithms and proteins in key clus-
ters with the highest scores as hub proteins in networks. 
Coexpression networks of hub proteins were constructed 
using the GeneMANIA database.

Statistical analysis
The differences in data on clinical characteristics, which 
were presented as the mean or frequency, were tested 
with a two-tailed independent sample t-test or chi-
square test, respectively. The permutation test for one-
way ANOVA was used to analyze the differences in NPX 
between the three groups. A Benjamini‒Hochberg cor-
rected p-value < 0.05 indicates a statistically significant 
difference. Heatmaps of DEPs were generated by pheat-
map in the R package. The differences in the relative 
expression levels of hub proteins or overlapping proteins 
were tested by permutation test and are displayed in 
boxplots generated by “ggplot2” in the R package. Cor-
relations between differentially expressed proteins and 
clinical traits of CMDs were determined using Spear-
man’s rank correlation coefficients and corresponding p 
values and are presented in a correlation heatmap gen-
erated by pheatmap in the R package. Receiver operat-
ing characteristic (ROC) curve analysis was performed 

Fig. 1 Flow chart of this study. Schematic diagram shows the experiment design. CMD = Cardiometabolic disorders. DEPs = Differentially expressed pro-
teins. PPI network = protein-protein interaction PPI
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on overlapping proteins to verify their accuracy, and 
those with an AUC > 0.7 were deemed useful for disease 
diagnosis.

Results
Baseline characteristics of study participants
The three groups in this study included HY individu-
als, HE individuals, and elderly individuals with CMDs. 
Principal component analysis (PCA) based on the sam-
ples was first performed for quality control. The results 
showed that one of the CMDs samples deviated from 
the group whose IQR was beyond the mean IQR +/- 
IQR_outlierDef standard deviation. Hence, its data were 
removed from further analysis (Figure S1). Table 1 shows 
the baseline characteristics of the subjects. The aver-
age age of the HY group was 28.60 (3.53), and that of the 
HE group and the CMDs group was 80.7 (4.69) and 79.3 
(4.67), respectively. In the three groups, there were no 
statistically significant differences in the plasma indexes 
that represented the basic metabolic function of the liver 
and kidney, such as ALT, AST, TBIL, Scr, and BUN. Of 
note, elderly individuals with CMDs presented higher tri-
glyceride (TG) and FPG levels than HE individuals, while 
other serum lipids, such as TC, HDL-C, and LDL-C, in 
the two groups were not significantly different.

Differentially expressed inflammatory proteins between 
healthy young and healthy elderly individuals
The flow chart for this research is shown in Fig.  1. We 
detected 368 inflammatory proteins in the plasma of 

the three groups by O-link. The comparison of inflam-
matory proteins between the HY group and HE group 
indicated significant differences in 161 proteins (adjusted 
p < 0.05) at the plasma level. Of these, 96 inflammatory 
proteins were upregulated, and 65 inflammatory pro-
teins were downregulated with aging (Fig.  2A). The top 
30 DEPs are presented in Fig. 2B. To study the functions 
of DEPs associated with age, GO biological process and 
KEGG pathway enrichment analyses were performed. 
The results showed that DEPs associated with aging were 
mainly enriched in chemotaxis in GO analysis and NF-κB 
signaling pathway in KEGG pathway analysis (Fig.  2C 
and D). To explore the interaction between DEPs, a PPI 
network with combined scores greater than 0.4 was con-
structed using the STRING database. The PPI network of 
DEPs between HY and HE showed that CXCL10, EGF, 
IL7, IL18, CSF1, CCL3, CXCL1, CXCL9, and CSF3 most 
closely interacted with other proteins (Fig. 2E). To deter-
mine the hub genes in DEPs between HY and HE, func-
tional modules of the PPI network were constructed by 
the MCODE plug-in in Cytoscape. The cluster with the 
highest score (9.56) contained 86 edges and 10 nodes, 
including CXCL10, CCL3, CSF1, CSF3, IL7, IL18, HGF, 
CXCL9, OSM, and EGF (Fig.  2F). Furthermore, we uti-
lized seven algorithms to screen the top 15 hub proteins. 
There were 7 proteins in all 7 methods, namely, CXCL10, 
CSF1, EGF, HGF, IL18, CCL3, and CXCL1 (Table S1 and 
Fig. 2G). Of these, CXCL10, CSF1, EGF, HGF, IL18, and 
CCL3 also exist in the functional module. Therefore, 
these 6 proteins were considered hub proteins of inflam-
mation in aging in this study and were used to construct a 
coexpression network for analyzing the functions of hub 
proteins using the GeneMANIA database (Fig. 2H). The 
relative expression levels of hub proteins are presented in 
Fig. 2I, which shows that EGF was the most significantly 
differentially expressed hub protein in aging.

Differentially expressed inflammatory proteins between 
healthy elderly individuals and elderly individuals with 
CMDs
Compared with HE, CMDs presented significantly dif-
ferent expressions of 28 proteins. Among these, there 
were 26 upregulated proteins and 2 downregulated pro-
teins (SCG3 and WFIKKN2) (Fig.  3A and B). To study 
the function of DEPs between HE and CMDs, the results 
of enrichment analysis indicated that the DEPs were 
enriched in positive regulation of phosphatidylinositol 
3-kinase signaling of GO analysis (Fig.  3C) and IL-17 
signaling pathway of KEGG pathway analysis (Fig.  3D). 
Through protein-protein interaction analysis between 
DEPs, the network was constructed and consisted of 13 
nodes and 54 edges showing that TNF, IL1B, VEGFA, 
IL1RN, and MMP1 were closely connected with the other 
proteins (Fig. 3E). Module analysis was used to determine 

Table 1 Baseline Characteristic of study participants
Healthy 
young

Healthy 
elderly

Elderly with 
CMD

Age 28.60 (3.53) 80.7 (4.69) a 79.3 (4.67)
Sex (F/M) 5/5 5/5 6/3
Abdominal obesity 0/10 0/10 10/10 b

CVDs (atherosclerosis, 
sroke, myocardial infarc-
tion, etc.)

0/10 0/10 0/10

ALT (U/L) 21.58 (5.28) 16.56 (4.90) 24.04 (15.55)
AST (U/L) 20.19 (3.04) 22.48 (4.76) 26.39 (14.12)
TBIL (µmol/L) 11.53 (3.47) 12.45 (3.75) 11.98 (3.21)
Scr (µmol/L) 65.47 (13.16) 71.25 (11.58) 71.05 (16.62)
BUN (mmol/L) 5.75 (1.39) 5.50 (0.53) 6.85 (1.88)
TC (mmol/L) 4.72 (0.66) 5.64 (1.10) a 6.00 (1.11)
TG (mmol/L) 1.08 (0.23) 1.21 (0.32) a 2.50 (0.89) b

LDL-C (mmol/L) 3.15 (0.56) 3.38 (0.39) 3.59 (0.83)
HDL-C (mmol/L) 1.25 (0.06) 1.4 (0.34) 1.11 (0.29)
FPG (mmol/L) 4.58 (0.60) 5.61 (0.27) 10.05 (3.03) b

Data are presented as mean (SD) except sex presented as frequency. ALT, 
glutamic-pyruvic transaminase; AST, glutamic-oxaloacetic transaminase; 
TBIL, total bilirubin; Scr, serum creatinine; BUN, blood urea nitrogen; TC, total 
cholesterol; TG, triglyceride; LDL-C, low-density lipoprotein cholesterol; HDL-C, 
high-density lipoprotein cholesterol; FPG, fasting plasma glucose; ap < 0.05 vs. 
healthy young; bp < 0.05 vs. healthy elderly
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the key cluster in the network of DEPs between HE and 
CMDs. The functional module consisted of 6 nodes and 
28 edges, including TNF, IL1RN, IL1B, MMP1, VEGFA 
and ANGPT1 (Fig. 3F). In addition, the top 10 hub pro-
teins of the DEPs were analyzed by 7 algorithms, which 
are shown in Table S2 and Fig. 3G. The common hub pro-
teins include TNF, IL1B, IL1RN, VEGFA, MMP1, IL18R1 
and IRAK4. TNF, IL1B, IL1RN, VEGFA, and MMP1 exist 
in the cluster with the highest score as well. Accordingly, 
the above 5 proteins were deemed hub proteins in elderly 
individuals with CMDs, and the co-expression network 
and functions of these proteins were analyzed as shown 

in Fig.  3H. Further analysis showed the relative expres-
sion of hub proteins, and MMP1 was the most significant 
hub protein in CMDs (Fig. 3I).

Common DEPs between normal aging and CMDs
Based on the expression of inflammatory proteins, prin-
cipal component analysis  (PCA) indicated that there 
was the largest difference between HY and HE, but the 
separation between HE and CMDs was less pronounced 
(Fig. 4A). The Venn diagram showed that there were 10 
overlapping proteins: PRDX5, NCF2, IRAK4, EGLN1, 
MVK, CXCL6, SHMT1, REG4, SLC39A5 and PTPN6 

Fig. 2 Differentially expressed inflammatory proteins between healthy young and healthy elderly individuals. (A) Volcano map of differentially expressed 
proteins between healthy young and healthy elderly individuals. (B) Heatmap shows the top 30 differentially expressed proteins (p < 0.05) in healthy 
young individuals and healthy elderly individuals. (C, D The enrichment analysis results of GO and KEGG pathways are presented by bubble graphs. An 
adjusted p-value < 0.05 was considered significant. (E) PPI network. Node size indicates the number of proteins that interact with it. The green node repre-
sents downregulated proteins, and the red node represents upregulated proteins. Edge width indicates the strength of the interaction between the two 
proteins. (F) The node protein clusters with the highest scores were constructed by the MCODE plug-in in Cytoscape. (G) The top 15 hub proteins were 
constructed by cytoHubba. The figure shows the top 15 hub genes constructed by the MCC method. (H) The common hub proteins calculated by seven 
algorithms of plug-in cytoHubba and their coexpressed genes were analyzed via GeneMANIA. (I) Relative expression of common hub proteins in DEPs 
between healthy young individuals and healthy elderly individuals
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(Fig. 4B). The related functions of these DEPs are shown 
in Table S3. To verify the accuracy of overlapping pro-
teins for the diagnosis of CMDs in aging, we performed 
ROC analysis. The results showed that these proteins had 
good diagnostic value for CMDs with AUCs > 0.7, which 
were 0.8, 0.7889, 0.7556, 0.7444, 0.8667, 0.8444, 0.7111, 
0.8222, 0.8111 and 0.8222 for PRDX5, NCF2, IRAK4, 
EGLN1, MVK, CXCL6, SHMT1, REG4, SLC39A5 and 
PTPN6, respectively (Fig.  4C). We also determined the 
correlation between these DEPs and clinical traits and 
found that all overlapping proteins correlated with the 
level of HDL-C, TG, or FPG in plasma (Fig.  4D). These 
results suggested that the overlapping proteins have good 
predictive value for CMDs in aging. We further explored 

the relative expression of overlapping proteins and found 
that EGLN1, NCF2, REG4, and SLC39A2 significantly 
increased in both normal aging and aging with CMDs 
(Fig. 4E).

Discussion
Our study identified 368 inflammatory proteins associ-
ated with aging and cardio-metabolism in healthy young 
individuals, healthy elderly individuals, and elderly indi-
viduals with CMDs. A total of 161 out of 368 inflamma-
tory proteins may be regulated by aging and be enriched 
in chemotaxis. Twenty-eight of 368 inflammatory pro-
teins may be associated with CMDs and be enriched in 
I-κB kinase/NF-κB signaling. There were 10 common 

Fig. 3 Differentially expressed inflammatory proteins between healthy elderly individuals and elderly individuals with CMDs. (A) Volcano map of DEPs 
between healthy elderly individuals and elderly individuals with CMDs. (B) Heatmap shows the differentially expressed proteins (p < 0.05) in healthy el-
derly individuals and elderly individuals with CMDs. (C, D) The enrichment analysis results of GO and KEGG pathway analyses. An adjusted p-value < 0.05 
was considered significant. (E) PPI network. Node size indicates the number of proteins that interact with it. Edge width indicates the strength of the 
interaction between the two proteins. (F) The node protein clusters with the highest score are constructed by the MCODE plug-in in Cytoscape. (G) The 
top 10 hub proteins were constructed by cytoHubba. The figure shows the top 10 hub genes constructed by the MCC method. (H) The common hub 
proteins calculated by seven algorithms of plug-in cytoHubba and their coexpressed genes were analyzed via GeneMANIA. (I) Box plot showing the rela-
tive expression of common hub proteins in DEPs between healthy elderly individuals and elderly individuals with CMDs
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inflammatory proteins possibly related to both aging 
and CMDs, namely, SHMT1, MVK, EGLN1, SLC39A5, 
NCF2, CXCL6, IRAK4, REG4, PTPN6, and PRDX5. This 
study may presented a novel inflammatory protein profile 
in plasma associated with aging and CMDs and revealed 
their common inflammatory molecule phenotypes.

While most of the identified inflammatory biomarkers 
would seem to represent novel findings related to aging, 
some of them have been reported in several proteomics 
studies of aging. A previous study identified 217 pro-
teins in plasma that are significantly associated with age 
by measuring 1301 proteins in 240 healthy subjects aged 
22–94 years [21]. Among them, 14 proteins were also 
present among the 165 inflammatory biomarkers iden-
tified in this study, namely, CXCL10, CCL11, CHRDL1, 
CCL23, EGF, SPON1, FSTL3, REG4, CCL3, CXCL9, 
LGALS9, PLAUR, CCL7 and EPHA1. Furthermore, many 
proteomic studies of age-related biomarkers performed 
in different matrices using multiple platforms were 
reviewed. In the literature, they reported 232 age-associ-
ated biomarkers that had a consistent direction across at 
least two different studies and were associated with age 
in at least one other nonplasma matrix regardless of the 
direction [22]. Notably, 6 biomarkers were also identified 
in this study, including EGF, SPON1, LGALS4, CRKL, 

PLAUR, and BSG. However, none of the biomarkers in 
our study were present in senescence-associated secre-
tory phenotypes (SASPs) previously identified in several 
types of senescent cells induced by senescence-inducing 
stimuli in vitro [23, 24]. The possible reason is that their 
study subjects and experimental context are largely dif-
ferent. Our study suggested that CXCL10, CSF1, EGF, 
HGF, IL18, and CCL3 were hub proteins related to age 
among 161 inflammatory proteins, and EGF seems to be 
the most significant age-associated protein. Although few 
studies have proven the decline in EGF in normal aging, 
the level of EGF decreases in the early stage of Parkin-
son’s disease, which is related to the nonmotor symptoms 
of PD patients [25]. The concentration of EGF in plasma 
increased in patients with mild cognitive impairment 
and Alzheimer’s disease. Interestingly, EGF conferred a 
protective effect on cognitive and cerebrovascular dys-
function in an AD-Tg mouse model that incorporates 
cerebrovascular-relevant AD risk factors [26]. Therefore, 
it is worth exploring the relationship between changes in 
plasma EGF and aging and age-related diseases in a large-
scale population.

CVDs are prevalent in the aging population, and car-
diometabolic disorders are a major atherogenic risk fac-
tor that subsequently elicits cardiovascular diseases [27]. 

Fig. 4 Common DEPs between normal aging and CMDs. (A) PCA. The first two primary components (PC1 and PC2) are plotted. (B) Venn diagram shows 
an overlap of differentially expressed proteins between healthy young individuals vs. healthy elderly individuals and healthy elderly individuals vs. elderly 
individuals with cardio-metabolic disorder. (C) ROC curve analysis of overlapping proteins. (D) Correlation between differentially expressed proteins and 
clinical traits in cardio-metabolic disorder. Each cell contains a correlation coefficient. *p < 0.05, **p < 0.01, ***p < 0.001. (E) Box plot showing the relative 
expression of overlapping proteins
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Thus, our study suggests that there may be a link between 
28 inflammatory proteins and CMDs. WFIKKN2 is the 
only protein that was reported in a previous plasma pro-
teomic study that presented 53 proteins associated with 
metabolic syndrome defined by the simultaneous clus-
tering of cardio-metabolic risk factors, although it was 
determined to have no causal effects on metabolic syn-
drome [28]. Nonetheless, it was claimed that there was a 
bidirectional causal relationship of WFIKKN2 with BMI, 
which is an important risk factor for cardiovascular dis-
eases [29]. In addition, some main circulating biomarkers 
in metabolic syndrome were not present in 22 inflamma-
tory proteins in our study, such as IL6, which is linked to 
low HDL-C and high TGs, impairment of glucose metab-
olism, vascular dysfunction, and atherosclerosis [4].

In addition to the above proteins, we may present sev-
eral newly identified potential inflammatory proteins 
associated with CMDs in plasma. Among them, TNF, 
IL1B, IL1RN, VEGFA, and MMP1 are hub proteins 
selected by many algorithms, and MMP1 is the most sig-
nificant. Circulating MMP1 levels have been reported to 
correlate with coronary artery disease burden (number of 
diseased coronary arteries ≥ 50% stenosis) and promote 
atherosclerosis progression by atypically activating PAR1 
signaling and contributing to the amplification of TNF-α 
signaling in endothelial cells. Clinical trials and experi-
ments in mice have demonstrated that MMP1 blockade 
or deficiency results in a reduction in total aortic plaque 
burden and the number of macrophages in plaques [30–
32]. MMP1 levels also had a strong positive correlation 
with FPG through correlation analysis, which indicates 
that MMP1 is a vital molecule in CVDs.

The overlap between differentially expressed inflamma-
tory proteins of aging and CMDs may reveal the common 
molecular alterations between aging and CMDs. Among 
these proteins, EGLN1, NCF2, REG4, and SLC39A2 were 
prominently increased both in normal aging and aging 
with CMDs. Notably, NCF2 was the most differentially 
expressed protein in these ten common proteins. It is 
one of a group of proteins that forms an enzyme complex 
called NADPH oxidase, which plays an essential role in 
the immune system. A previous study determined that its 
expression was elevated in the skeletal muscle of obese 
individuals compared with lean subjects [33]. However, 
NCF2 has rarely been reported in CVDs and aging or 
aging-related diseases. This suggests that NCF2, as an 
important regulator in the immune system, has great 
study potential for CVDs and aging or aging-related 
diseases.

EGLN1 and SLC39A5 have been reported to contrib-
ute to aging-related diseases or metabolic dysfunction. 
Specifically, EGLN1 targets HIF subunits for proteasomal 
destruction under normal oxygen concentrations. Inhi-
bition of it improves glucose and lipid metabolism and 

protects against obesity and metabolic dysfunction42. 
Furthermore, EGLN1 blockade was determined to 
have a beneficial impact on atherosclerosis by reducing 
approximately 50% of atherosclerotic plaque areas and 
macrophage numbers in white adipose tissue, increas-
ing autoantibodies against oxidized LDL [34, 35]. In a 
study of age-related neurodegeneration, EGLN1-HIFa 
signaling contributed to mitochondrial stress-induced 
neurotoxicity by ATP13A2 regulation in Parkinson’s dis-
ease (PD) [36]. EGLN1 inhibition was verified to main-
tain cellular iron hemostasis and neuronal viability in a 
PD mouse model and cultured human DAergic cells [37]. 
Conversely, SLC39A5 is indispensable for glucose metab-
olism, and it was reported that SLC39A5 is significantly 
downregulated in diabetic mice and that β-cell-specific 
Slc39a5 knockout mice have impaired insulin secretion 
[38].

It is necessary to acknowledge the limitations of this 
study. Firstly, the sample size of our study is small. The 
primary focus of this study was to investigate potential 
inflammatory biomarkers associated with aging and met-
abolic abnormalities, as well as the progression to car-
diovascular diseases from the pathogenesis of metabolic 
disorders. However, the majority of patients presenting 
at the hospital exhibit cardiovascular conditions, with a 
minimal portion of elderly patients displaying metabolic 
abnormalities without a confirmed diagnosis of cardio-
vascular diseases. The findings should be further investi-
gated in trials with a larger patient cohort. Secondly, the 
clinical pairs were not strictly matched across the three 
distinct groups, our results did not completely exclude 
the impact of covariates on the expression of inflamma-
tory proteins in subjects.

Conclusion
This study may reveal the alteration characteristics of 
serous inflammatory proteins in aging or CMDs and 
common molecular changes between aging and CMDs. It 
showed a signature pattern that could not only provide 
information regarding the future risk of CMDs and meta-
bolic function decline but also clue on the mechanism by 
which aging contributes to CMDs. Moreover, to verify 
the predictive value of common proteins, further stud-
ies are needed to follow up and explore the correlation 
between protein levels and the occurrence of cardiovas-
cular and cerebrovascular diseases in elderly individuals 
and those with CMDs.
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